A Computational Study on Additively Manufactured Welding Electrodes
DOI:
https://doi.org/10.17159/2309-8988/2019/v35a5Keywords:
additive manufacturing, mesh welding machines, copper electrodesAbstract
Advances in additive manufacturing technology present new design opportunities for metal parts that would otherwise be infeasible with subtractive manufacturing technologies. Clifford Machines & Technology (Pty) Ltd is an international producer of large mesh welding machines. The research was conducted with the aim of investigating the advantages that can be provided through the redesign of the mesh welding electrodes, for production using additive manufacturing. Simulation studies were applied in order to evaluate the performance of the redesigned electrodes and the results were compared to the existing electrodes. The results show that the electrodes designed for additive manufacturing achieved mass reductions of up to 58.2%. The electrodes were also able to support increases of current density by up to 98%, while operating at a lower temperature than the original electrodes. The study has identified the high initial cost of production and increased power consumption to be the disadvantages of additively manufactured electrodes.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2019 D.M. Kirkman, J. Pillay, J. Padayachee (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access. Ownership of copyright of work published remains with the authors, and published in open access under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.