Design of a Test Setup for Measuring all Load Components Acting on Tillage and Planting Implements
DOI:
https://doi.org/10.17159/2309-8988/2022/v38a2Keywords:
Agriculture, load muasurement, tillage implements, planting, seedingAbstract
This project entailed the design, manufacture, and testing of a test setup with the ability to measure all load components acting on tillage and planting implements. In future, data obtained with the test setup can be used to perform accurate design calculations, as input into finite element simulations, and to perform accurate fatigue analysis. The design of implements can therefore be improved to better withstand the loads under various operational conditions and to minimise fatigue cracking. Laboratory controlled testing, and subsequent field tests, proved that the designed test setup was able to isolate and accurately measure each of the three orthogonal load components, as well as the main moment. It was further shown that the remaining two moments could be accurately calculated using the measured load components and fixed geometric lengths. The conclusion was drawn, based on field tests, that an increase in speed with the tine ripper had no significant effect on the mean load. Further, an increase in the working depth, resulted in an increase in the load, especially in the draught and vertical directions. Finally, it was shown that a decrease in turning radius (a tighter turn), resulted in an increase in the lateral force component.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2022 J. W. van Santen, C. J. Coetzee (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access. Ownership of copyright of work published remains with the authors, and published in open access under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.