XFOIL Performance Validation for Medium- Scale Variable Pitch UAV Rotor Systems
DOI:
https://doi.org/10.17159/2309-8988/2023/v39a2Keywords:
AoA, Angle of Attack, XFOIL, airfoil analysis Application, BEMT, blade element momentum theory, UAV, unmanned aerial vehicle, FSI, Fluid Structure Ineraction, BLDC Brushless Direct Current MotorAbstract
This study focuses on experimentally validating the performance of XFOIL, a sophisticated software airfoil analysis tool used for approximating lift and drag coefficients. XFOIL output data was incorporated into a theoretical model simulating a variable pitch rotor system operating in a hovering state. The output of the Blade Element Momentum Theory (BEMT) rotor model is compared to thrust and power output performance data collected from a constructed rotor test bench and analysed in MATLAB. Using XFOIL as input, the BEMT rotor model was observed to yield good robust results when compared to experimental data, but demonstrated sensitivity to airfoil performance characteristics, laying the groundwork for future empirical validation. In comparing BEMT model performance, it was interesting to find that thrust performance remained within tolerance in contrast to an overprediction of rotor power output resulting from XFOIL drag at high blade pitch angles. Upon further interrogation by means of variable isolation, XFOIL demonstrated instability resulting from sensitivity to variability of model constraints. Modification of rotor geometry definitions or environmental constants beyond the test environment framework showed simulated systems may not necessarily behave reliably nor enhance output performance. This highlights the critical importance and utility of experimentation for understanding theoretical model behaviour or validating simulation output performance.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2023 B.V.N. Nielsen, M. Gilpin (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access. Ownership of copyright of work published remains with the authors, and published in open access under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.