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Abstract: The application of deep learning algorithms for
fault identification in wind turbine components is contingent
on extensive data. Such data is often scarce, especially in the
faulty category. While adversarial data augmentation helps,
biases from the original data persist, and larger datasets
strain computational resources. As a solution, experts are
turning to transfer learning. Leveraging insights from re-
lated domains, transfer learning enables machine learning
models to circumvent the necessity of training from scratch
with extensive data. This study proposed a transfer learning
strategy for fault identification in high-speed wind turbine
shaft bearings. Two-dimensional matrices extracted from
vibration signals sampled from the turbine bearings are em-
ployed to train ResNet50 and VGG16 convolutional neural
network models with frozen weights based on transfer learn-
ing. While both models performed well on the normal test
samples, they showed differing robustness when evaluated
with noise-induced test samples. Contrarily, the ResNet50
had an accuracy, F-score, and training time of 82.21 %,
78.34 %, and 26.3 s, respectively, while the VGG16 model
had an accuracy and F-score of 95.55 % and 95.35 %, re-
spectively, but trained for 46 s. The ResNet50 may have con-
verged quickly due to a “skip connection” in its architecture,
typical of residual learning models. While the VGG16 is
computationally intensive, its superior performance and re-
silience to noise make it suited for vibration-based defect de-
tection in the high-speed shaft bearing, where severe back-
ground noise is prevalent.

Additional keywords: Convolutional Neural Network;
Fault Identification; High-speed Shaft Bearing; Transfer
Learning, Wind Turbine Gearbox.

1 Introduction
The failure of the gearbox high-speed shaft bearing (HSSB)
accounts for 20 % of wind turbine downtime [1]. In recent
years, due to limitations in using conventional models for fault
identification in the HSSB, there has been a growing trend in
using deep learning techniques [2]. The efficacy of deep learn-
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ing algorithms stems from their capacity for end-to-end learn-
ing, obviating the need for costly feature engineering. The
application of deep learning models, however, depends on the
availability of extensive training data. Due to various reasons,
including access restrictions and privacy concerns, condition
monitoring datasets (especially in the faulty category) are of-
ten limited [3]. The latter presents practical application limita-
tions for deep learning models. Some authors have attempted
to address the difficulties of training deep neural networks in
the face of limited data [4, 5]. The core of these efforts has
centred on using generative models, particularly generative
adversarial networks (GANs), for data augmentation. Zhou
et al. [4] employed GANs to augment data for improved wind
turbine power forecasting. Liang et al. [5] employed GANs
for data augmentation in single and compound fault diagnosis
of wind turbine gearboxes. While adversarial data augmen-
tation helps, biases from the original data persist, and larger
datasets strain computational resources [6]. As a solution, ex-
perts are turning to transfer learning (TL). Leveraging insights
from related domains, TL enables machine learning models to
circumvent the exigency of training from scratch with exten-
sive data, a possibility that this study seeks to explore in the
wind turbine space.

Transfer learning has become increasingly popular in the
wind turbine space. However, there are still research gaps.
The application of transfer learning in the wind turbine space
has been limited to a few algorithms, including convolutional
autoencoder, LSTM, MobileNetv1-YOLOv4, and a few oth-
ers [7]. Even fewer studies have applied TL to the gearbox
HSSB. These studies employed deep convolutional neural net-
works and recurrent neural networks [8]. In light of the emer-
gence of pre-trained neural networks in recent years, this study
area remains fertile for further investigation.

Recently, the use of convolutional neural network (CNN)
pre-trained variants, including the Residual Network – 50
(ResNet50) and the Visual Geometry Group - 16 (VGG16),
for transfer learning with limited samples has gained signif-
icant interest in many domains. Among others, these al-
gorithms have been applied for improved feature classifica-
tion with significant success rates in agriculture, cybersecu-
rity, machinery health monitoring, and medicine [9, 10]. The
ResNet50 is a residual model proposed by He et al. [11] in
2015. The depth of the ResNet50 makes it excel in image
recognition, segmentation, and classification. The model ex-
tracts features from image data through its convolutional lay-
ers, comprising 3x3 and 1x1 filters. The Visual Geometry
Group 16 (VGG16) is a variant of CNN developed by the
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Visual Geometry Group at the University of Oxford in 2014
[12]. The VGG16 primarily employs 3x3 convolutional filters.
The small filter sizes allow the network to learn complex spa-
tial features in image data. While the VGG16 and ResNet50
models have demonstrated outstanding performance in image
classification tasks in other domains, they have not been im-
plemented for fault recognition in the HSSB. To bridge this
gap, this study proposes a transfer learning strategy based on
the ResNet50 and VGG16 models for fault identification in
HSSB.

2 Study Methodology
2.1 Dataset information
This work used the National Renewable Energy Laboratory
benchmarking dataset as our case study. The data consists
of 10-minute vibration signals sampled from the high-speed
shaft bearing (SKF 32222-J2 tapered roller bearing) of a
750 kW stall-controlled wind turbine. The vibration signals
were acquired from accelerometers mounted in the gearbox at
a sample rate of 40 kHz using the National Instrument’s PXI-
4472B data acquisition system.

2.2 Model development

2.2.1 Transfer learning

The theoretical basis of transfer learning is founded on the
concepts of domain and task, denoted by D and T respectively
[13]. A domain comprises two parts, a marginal probability
distribution and a feature space, denoted by P(x) and χ , in or-
der. If x ∈ χ , then the domain may be defined mathematically
as:

D = {χ,P(x)} (1)

In the same vein, if a decision function f (x) and a label
space ϒ are components of a task, then the task may be defined
as:

T = {ϒ, f (x)} (2)

The expression above may be viewed as a conditional prob-
ability distribution P(y|x) in which y ∈ ϒ. In practice, a do-
main with a substantial quantity of sample data accompanied
by label information is called a source domain. The term “tar-
get domain” refers to the domain with a knowledge deficit.
Transfer learning seeks to leverage the knowledge acquired
from a source domain and effectively apply it to a target do-
main [14] to accomplish the desired task in the target domain
(Figure 1). In this study, we employ two convolutional neural
network variants, ResNet50 and VGG16, for transfer learning.
Both models have been pre-trained on the ImageNet dataset.

2.2.2 Transfer learning with ResNet50 and VGG16

A CNN is a machine learning model suited for learning fea-
tures in data arranged in grid patterns, such as image data. In
CNNs, spatial features are learned from image data through

Figure 1 Knowledge transfer from source domain to tar-
get domain

convolution operations. In this study, we employ two vari-
ants of the CNN, the ResNet50 (Figure 2) and VGG16 (Fig-
ure 3) for transfer learning. To achieve transfer learning, the
final layers of the VGG16 and ResNet50 were removed and
replaced with two dense layers and a sigmoid activation func-
tion (Figure 4). Whereas the first dense layer had 512 neu-
rons, the last dense layer had a single neuron. The sigmoid
function in the updated models converts real-valued inputs to
a probability range of [0, 1], allowing for binary classification
of the gearbox HSSB states. Subsequently, the weights of the
new models were frozen while the fully connected layers re-
mained trainable. This enabled knowledge transfer from the
pre-trained CNN to our modified models. Table 1 presents the
training hyperparameters of the modified models.

Figure 2 Architecture of the ResNet50 CNN model

Figure 3 Architecture of the VGG16 CNN model

Figure 4 Modification of pre-trained VGG16 and
ResNet50 models for transfer learning
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Table 1 The VGG16 and ResNet50 training hyperpa-
rameters

Parameter Name Value
Learning rate 0.01
Loss function Binary cross entropy
Metrics Accuracy
Batch Size 200
Epochs 5

2.3 Gaussian noise addition
To evaluate the robustness of the VGG16 and ResNet50 mod-
els, the models were tested with vibration signals corrupted
with Gaussian white noise at a signal-to-noise ratio of 8dB
[15]. The signal-to-noise ratio (SNR) of a vibration signal
is expressed as the ratio of the average power of the signal
(Psignal avr) to the average power of noise (Pnoise avr):

SNR =
Psignal avr

Pnoise avr
(3)

2.4 Performance evaluation of the models
Four performance metrics, defined in the equations below,
were used to evaluate the performance of the study models.
They include accuracy, recall (sensitivity), precision (speci-
ficity) and F1-score based on the number of true positive (T P),
true negative (T N), false positive (FP), and false negative
(FN) results reported by the model under investigation.

Accuracy =
T P+T N

T P+FN +FP+T N
(4)

Recall =
T P

T P+FN
(5)

Precision =
T P

T P+FP
(6)

F1-score =
2×Precision×Recall

Precision+Recall
(7)

3 Results and Discussion
The scripts for the models were written in Python and in-
stalled on a laptop PC with a 12th generation Intel Core i7
multi-core microprocessor with 32 GB of RAM. The study
employed 70 % of the dataset for training the models, 10 %
for validation, and 20 % for testing.

3.1 Comparison of the ResNet50 and VGG16
models

Table 2 compares the performance and computational time
of the ResNet50 and VGG16 models on the normal and cor-
rupted test data. The analysis of the findings presented in Ta-
ble 2 indicates no significant difference in the performance
of the study models when evaluated on normal vibration data.

Both models had peak performance scores for accuracy, preci-
sion, recall, and F1-score. The models’ excellent results align
with those found by Yoo et al. [16], who used transfer learning
with a ResNet50 and a VGG16 model to achieve defect clas-
sification accuracies of 99.74 % and 99.88 %, respectively, in
ball bearing multi-defect identification.

Table 2 Performance scores and computational time of
the ResNet050 and VGG16 models on the nor-
mal and noise-induced test data

Performance Normal Noise-induced
Measure ResNet50 VGG16 ResNet50 VGG16
Accuracy (%) 99.96 99.97 82.21 95.55
Precision (%) 100.0 99.99 88.00 98.85
Recall (%) 99.99 100.0 64.39 91.24
F1-Score (%) 99.94 99.96 78.34 95.35
Compute Time (s) 21.5 43.1 26.3 46.3

Table 2 also compares the performance and computational
time of the models on the noise-induced test data. The ta-
ble shows that the ResNet50 and a VGG16 have differing re-
silience to noise when evaluated on the corrupted vibration
signals. The VGG16 outperforms the ResNet50 with an av-
erage performance margin of 15.35 % across all the metrics
evaluated. The related confusion matrices and area under the
curves (AUCs) of the models are depicted in Figure 5. The
superior AUC of the VGG16 demonstrates the model’s diag-
nostic prowess over its counterpart. The confusion matrices
of the two models intuitively confirm this observation. While
the ResNet50 exhibited multiple misclassified observations,
the VGG16 had only a few misclassifications. The high per-
formance of the VGG16 network is a result of its compact fil-
ter sizes, which enable it to learn complex spatial features in
image data. The low performance of the ResNet50 compared
to the VGG16 may be linked to its extreme depth, which may
have caused it to overfit the training data. The last column in
Table 2 compares the computation times of the ResNet50 and
VGG16 models. It is seen from these results that although
the VGG16 outperformed the ResNet50, this outstanding per-
formance came at the expense of computation speed. While
the small filter sizes enabled the VGG16 to learn complex pat-
terns in the vibration signal, convolutional operations required
much processing time. The ResNet50 may have converged
quickly due to a “skip connection” in its architecture, typical
of residual learning models. While the VGG16 is computa-
tionally intensive, its superior performance and resilience to
noise make it suited for vibration-based defect detection in the
wind turbine gearbox HSSB, where severe background noise
is prevalent.

Figure 5 (a) Confusion matrix of the ResNet50 model, (b)
confusion matrix of VGG16 model, (c) AUC of
the ResNet50 and the VGG16 model

R & D Journal of the South African Institution of Mechanical Engineering 2024, 40, 22-26 
http://dx.doi.org/10.69694/2309-8988/2024/v40a4

http://www.saimeche.org.za (open access) 

24



Fault Identification in High-Speed Shaft Bearings with Transfer Learning

In the bar chart shown in Figure 6, the accuracies and F1-
scores of the ResNet50 and VGG16 models are compared
with those of a vanilla CNN model employed in a compara-
ble study for fault identification in the HSSB [17]. In contrast
to this study’s models, the reference study’s CNN model was
trained from scratch. The bar chart compares the robustness
of the models to noise induced in the test data, as evidenced
by the performance scores of the respective models. The chart
shows that the ResNet50 and VGG16 models demonstrate su-
perior resilience to noisy vibration signals compared to the
vanilla CNN model. This result underscores the prowess of
pre-trained models. By leveraging knowledge from other do-
mains, transfer learning, while requiring limited samples, ob-
tains comparable (and sometimes superior) performance to
models trained from scratch on similar tasks.

Figure 6 Comparison of accuracy and F1-score of
ResNet50, VGG16 and a vanilla CNN model in
a related study [17]

4 Conclusion
This study proposed a novel transfer learning technique for
fault identification in the high-speed shaft bearing of the wind
turbine gearbox. The study employed pre-trained ResNet50
and VGG16 CNN models to learn fault features from the vi-
bration signals of the HSSB. Analysis of the results showed
that the VGG16 outperformed its counterpart, albeit with a
trade-off in computational efficiency. The VGG16 model rep-
resents a potential resource for data analysts seeking efficient
fault diagnosis with limited samples in the wind turbine space.
The proposed strategy is a feasible alternative to employing
synthetic data generated through adversarial learning. Future
studies could employ the proposed method for fault identifica-
tion in other wind turbine components, like the main bearing,
where data limitations are a persistent concern.
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