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Abstract: This project aims to design and implement a fall 
detection system for the elders using machine learning 
techniques and Internet-of-Things (IoT). The main issue 
with fall detection systems is false alarms and hence 
incorporating machine learning in the fall detection 
algorithm can tackle this problem. Therefore, choosing the 
right machine learning algorithm for the given problem is 
essential and several factors need to be considered in 
making that choice. For this project, the XGBoost 
algorithm is used and the machine learning model is trained 
on the Sisfall dataset. A wearable device that is worn on the 
waist is designed using an accelerometer, a microcontroller, 
a Global Positioning System (GPS) module and a buzzer. 
The acceleration data obtained is converted into features 
and fed into the machine learning model which will then 
make a prediction. If a fall event has occurred, the buzzer is 
activated and emergency contacts of the victim are notified 
immediately using IoT and Global System for Mobile 
Communications (GSM). This allows the fall victim to be 
attended quickly, thus reducing the negative consequences 
of the fall. The details of the fall are stored on the cloud so 
that they can be easily accessed by healthcare professionals. 
Testing the system concluded that the XGBoost machine 
learning algorithm is well suited for this problem due to the 
small percentage error obtained. 

Additional keywords:  Fall detection, machine learning, 
XGBoost , IoT. 

1 Introduction 
In the past decade, the world population has been ageing due 
to an increase in life expectancy and medical advances [1,2]. 
According to the United Nations, in 2017, there was 
approximately 962 million people aged 60 or above globally 
which accounts for 13 % of the world population [1]. The 
population of elders around the world is increasing by about 
3 % each year [1]. Due to this ageing population, measures 
need to be taken to enhance the Quality of Life (QoL) of 
elders by ensuring that they have an active and independent 
life. Falls represent one of the main health risks to elders 
worldwide and the rapidly ageing population enhances this 
threat to public health [2]. As people get older, they become 
more fragile and their senses deteriorates, for example, their 
vision worsens and their ability to perceive the surroundings 
diminishes hence making them more prone to falls [3]. 
Moreover, some of the medicines prescribed to elderly people 
for medical problems may cause a decrease in mental 

alertness, hence increasing the probability of a fall. 
According to the World Health Organization (WHO), about 
30 % of people above 65 are victims of accidental falls 
annually and for people above 80, the fall rate reaches about 
50 % [4]. Falls more often occur indoor and are associated to 
activities of daily living (ADLs). In order to tackle this issue, 
 fall detection systems have been designed which make use 
of sensors and other components to detect falls and allow 
timely assistance to the fall victims by alerting emergency 
contacts and healthcare personnel immediately after a fall 
event [4-7].  

A robust fall detection system monitors the fall and alerts 
caregivers, hence alleviating their burden and diminishes the 
workload on resource constrained healthcare systems [8]. 
Fall detection systems can be classified into two main 
categories: context-aware systems and wearable device based 
approaches [9]. Context-aware systems use networks of 
sensors deployed in the environment to detect falls. They 
include ambient sensors as infrared, floor, radar, 
microphones, and pressure sensors as well as vision-based 
devices [10]. Wearable device based approaches consist of 
various sensors embedded in a fabric that is worn by the user 
which can detect the latter’s position and motion. Wearable 
sensors with accelerometers and gyroscopes are frequently 
used in fall detectors [10]. Smart phones equipped with 
accelerometer sensors have also been used as fall detection 
systems [11-14]. A mobile application is used to analyse the 
data from the sensor and if a threshold value is detected, a fall 
is detected. A smart home monitoring unit that uses the 
ZigBee wireless sensors has been developed which can 
monitor the daily activities of the elder in real time by the use 
of sensors placed on the household appliances used by the 
elder [15,16]. This method reduces false alarms and can also 
predict unusual behaviour. Systems using omni-directional 
cameras have been developed which use image and audio 
processing techniques coupled with machine learning 
techniques to detect if a fall event has occurred. These 
systems have proven to be robust systems, but they have 
numerous drawbacks including high cost, lack of privacy as 
they are located indoors. 

For wearable devices, the most common used sensors are 
tri-axial accelerometers and gyroscopes. These systems use a 
threshold based fall detection algorithm to detect falls 
[17,18]. The wearable devices have numerous advantages 
including low power consumption, low weight, small size 
and ease of operation. One main drawback is that being a 
wearable device, the elderly can often forget to wear it. IoT 
is being incorporated in wearable fall detection systems to 
help decrease the workload of the device and prolong its 
operational longevity [19,4,20]. When a fall is detected, the 
IoT gateway is able to notify the emergency contacts and 
healthcare professionals about the details of the fall. The data 
about each fall event is stored on the cloud and new models 
can be built using this information. 
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When a fall detection system is being designed, the 
following aspects need to be considered: obtrusiveness, 
privacy, energy consumption, computational cost, noise 
distorting the signal being monitored and defining a threshold 
for threshold-based systems [21]. One of the main issues 
when designing a fall detection system is to implement a fall 
detection algorithm that is reliable in detecting falls and has 
a low probability of false alarms. 

Nowadays, machine learning (ML) techniques are being 
implemented in fall detection algorithms so as to increase 
accuracy of predicting a fall and decreasing the probability of 
false alarms in a fall detection system. They include Support 
Vector Machine (SVM), Decision Tree (DT), Naive Bayes 
(NB), Least Squares Method (LSM), K-Nearest Neighbour 
(K-NN), and Artificial Neural Networks (ANNs), XGBoost, 
Random Forest (RF), LightGBM [17,19,21-30]. The related 
studies and results are given in the following paragraphs. 

In [22], the issue of false alarms in a fall detection system 
was tackled using the one-class SVM machine learning 
algorithm. Here, the sensor used to get the acceleration data 
was the tri-axial accelerometer, MMA7260Q. The 12 
volunteers, eight males and four females aged from 10 to 70 
years old with height from 1.36 m to 1.80 m were selected to 
attend the experiments. The fall training data was obtained 
from young adult volunteers. The ADLs data was obtained 
from both young adults and elders. This system had a fall 
prediction accuracy of 96.7 %. However, it does not include 
any method of updating the machine learning model and 
alerting the emergency contacts if a fall event occurs. The 
false alarm rate was also not reported. 

In [23], activity recognition coupled with machine 
learning was used to distinguish between fall and non-fall 
events. Four approaches were used to be able to detect falls; 
first being the use of accelerometers, secondly, the use of 
gyroscopes, then, visual detection and finally, using video to 
reconstruct posture of the users. Three persons attended the 
experiments. Recordings of walking, falling, standing, sitting 
down and lying were used to obtain the coordinates of 12 
different body parts during each activity. These coordinates 
were used to obtain the three attributes used for machine 
learning namely, reference, body and angle attributes. These 
attributes were used to train eight machine learning models 
among C4.5 decision trees, RIPPER decision trees, NB, K-
NN, SVM, RF, Bagging and Adaboost M1 boosting with an 
accuracy of 94.1 %, 93.1 %, 89.5 %, 97.1 %, 97.7 %, 97.2 %, 
97.2 %, 96.3 % and 93.7 % respectively. SVM was found to 
have the highest accuracy. The false alarm rates were not 
mentioned.  

The SVM machine learning algorithm was used in [24] to 
implement the fall detection algorithm. The device was worn 
on the waist of the subject and consisted of tri-axial 
accelerometer, a microprocessor and a Bluetooth module. 
Four features were used to train the model using two-fold 
cross-validation on the dataset that was split in 50 % training 
data and 50 % test data. The system achieved an accuracy of 
99.14 %, a sensitivity of 99.60 %, and a false positive rate of 
1.3 %. The activities were performed by two groups of young 
volunteers (20 subjects) and one group of elderly volunteers 
(five subjects). Here, the model was trained mostly with data 
from young volunteers. 

In [19] it is proposed to use only the streaming 
accelerometer data from a commodity-based smartwatch 
device to detect falls. The smartwatch is paired with a 
smartphone as a means for performing the computation 
necessary for the prediction of falls in real time without 
incurring latency in communicating with a cloud server while 
also preserving data privacy. Both SVM and NB machine 
learning algorithms for the creation of the fall model were 
experimented. They showed that using a NB machine 
learning model, an accuracy of 93.33 % and a false positive 
rate of 8% can be obtained.  

A novel and truly unobtrusive detection method was 
proposed based on the advanced wireless technologies, 
WiFall [25]. WiFall employs the time variability and special 
diversity of Channel State Information (CSI) as the indicator 
of human activities. As CSI is readily available in prevalent 
in-use wireless infrastructures, WiFall withdraws the need for 
hardware modification, environmental setup and worn or 
taken devices. WiFall is implemented on laptops equipped 
with commercial 802.11n NICs. As demonstrated by the 
experimental results, WiFall with SVM algorithm yielded 
94 % detection precision with false positive rate of 13 % on 
average. 

In [4], a 6LoWPAN (IPv6 over Low -Power Wireless 
Personal Area Networks) wearable fall detection device 
consisting of a tri-axial accelerometer was designed and 
implemented. The fall detection algorithm was implemented 
using (DT) algorithm and the model was created from the 
Sisfall dataset using the BigML Data Analysis tool [26] and 
was stored in the cloud using MongoDB. A smart IoT 
gateway was set up which allowed the data from the 
accelerometer to be sent to a Big Data Analyser which will 
process and analyse the data from the sensor to decide if a fall 
has occurred or not. The model is updated each time new 
acceleration data is fed to it in order to increase its predictive 
accuracy. Whenever a fall is detected, the emergency contacts 
are notified through a MQ Telemetry Transport (MQTT) 
broker and the GPS information of the fall victim is also 
included in the notification. The data of each fall event is 
stored on the cloud so that medical professionals can easily 
access the data. The system had a fall prediction accuracy of 
91.67 %, precision of 93.75 % and a false positive rate of 
8 %. The fall detection system designed in [27] makes use 
IoT and an ensemble machine learning algorithm and consists 
of a tri-axial accelerometer on a 6LowPAN wearable device. 
This device is quite similar to that in [4] apart from the 
machine learning algorithm being used. The ensemble 
machine learning algorithm yielded an accuracy of 98.72 % 
as compared to 91.67 % in [4]. 

Vallabh et al. [28] investigated five different 
classification algorithms for fall detection using the MobiFall 
dataset. The K-NN algorithm obtained an overall accuracy of 
87.5 % with a sensitivity of 90.70 %, and a false positive rate 
of 16.22 %. 

In [17], the IoT based fall detection system is a 
smartwatch with a tri-axial accelerometer embedded in it. 
The smartwatch is used in parallel with a smartphone 
containing an Android application that uses the accelerometer 
data for fall prediction. The fall detection algorithm was 
implemented using SVM, NB and deep learning algorithms. 
For SVM and NB, four features were used to create the model 
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whereas deep learning does not require feature extraction. 
Whenever a fall is detected, emergency contacts are alerted 
and the fall data is stored on the cloud so that it is available 
to medical professionals. When predicting falls in real-time, 
SVM obtained an accuracy of 64 %, NB got 56 % and deep 
learning achieved 70 %.  The respective false positive rates 
were 14 %, 18 % and 46 %. The deep learning model was the 
better choice, but the accuracy of its predictive performance 
dropped from 99 % with an offline dataset to 70 % in real-
time. The drop in performance can be explained as follows. 
These systems are tested in a controlled environment and are 
optimized for a given set of sensor types, sensor positions, 
and subjects. Validation tests with elderly people 
significantly reduce the fall detection performance of the 
tested features [17].  

In [29], the long-term fall detection sensitivity and false 
alarm rate of a fall detection prototype was studied in real-life 
use using an automatic accelerometric fall detection system. 
The fall detection system detected 12 out of 15 real-life falls, 
having a sensitivity of 80.0 %, with a false alarm rate of 0.049 
alarms per usage hour with the implemented real-time 
system. It was also found that by some slight variation of data 
analysis the false alarm rate was reduced to 0.025 false alarms 
per hour, equating to 1 false fall alarm per 40 usage hours. 

A low-power fall detector using triaxial accelerometry 
and barometric pressure sensing was proposed that minimizes 
its power consumption using co-design of hardware and 
firmware and threshold optimization technique [30]. 
Additionally, the thresholds of the fall detection algorithm 
were optimized to achieve a balance between sensitivity and 
false alarm rate. The fall detector achieved a high sensitivity 
(91 %) with a low false alarm rate (0.1149 alarms per hour). 

XGBoost [31] is short for eXtreme Gradient Boosting 
package. XGBoost is an open source, efficient and popular 
implementation of gradient boosted decision trees. It belongs 
to a broader umbrella of Distributed Machine Learning 
Community (DMLC). It was made by the contributions of 
many developers with main contributions from Tianqi Chen 
and Carlos Guestrin [31,32]. It has been used by several 
Kaggle competition winners. XGBoost strictly prioritizes 
computational speed and model performances [32]. 
Advantages of XGBoost include ease of use, efficiency, 
feasibility, easy to install, highly developed R/Python 
interface for users, automatic parallel computation on a single 
machine and good accuracy for most data sets [33-35]. 

In [36], a self-adaptive system was designed so that it is 
able to adapt the fall detection algorithm to the current 
position of the wearable using XGBoost [31] and LightGBM 
[37]. These algorithms are known to perform better than the 
RF in numerous machine learning applications. These 
algorithms are tree-based ensemble methods, but differ 
significantly from the RF in the sense that the RF relies on 
bagging which decreases the variance of the prediction where 
XGBoost and LightGBM use boosting which should reduce 
the bias.   

A fall detection system should not miss a single fall due 
to the medical implications every fall may carry on which 
implies a fall detection model with a high Recall or 
Sensitivity. A missed fall is represented in our evaluation 
experiments as a false negative (FN). We also do not want to 
have too many false alarms, which in our evaluation as 

represented as false positives (FPs), and thus, we want to 
achieve a high sensitivity and a low false alarm rate. In this 
respect, an IOT-based fall detection system is designed and 
implemented with machine learning techniques that will be 
able to detect falls accurately and minimize the negative 
consequences of a fall allowing elderly people to live an 
active and independent life. The objectives are to design and 
implement an accurate and reliable fall detection system, to 
detect falls and alert emergency contacts instantaneously for 
immediate assistance,  to store the data about the fall event 
on the cloud to allow healthcare professionals to access the 
data easily, to be able to distinguish between real falls and 
false alarms using machine learning techniques, to use the 
data stored on the cloud to train the system so as to increase 
accuracy of detection and to provide GPS location of the fall 
victim in case of a fall. 

Section 2 describes the methodology used. Section 2 also 
describes how the machine learning model was designed 
together with the electrical and logical design of the fall 
detection system. The implementation and testing of the fall 
detection system being designed are also mentioned in this 
section. Section 3 provides an analysis of the final system by 
performing experiments and analysing the results. Section 4 
concludes the research work. 

2 Methodology 

2.1 Training Data from Sisfall 
The training data for the model was acquired from the Sisfall: 
A Fall and Movement Dataset [38,39] which contains data 
from both young and elderly participants. The dataset 
consists of 4505 files of which 1798 are related to 15 types of 
fall and 2707 files are related to 19 types of ADL. The 
movement data was measured and collected at a sample 
frequency of 200 Hz using two triaxle accelerometers 
(ADXL345 and ITG3200) and gyroscope (MMA8451Q). 

The participants were 23 young adults between the age of 
19 to 30 and 15 elders between the ages 60 to 75 years old. In 
this project, the data obtained from the elderly between the 
ages 60 to 75 years old is used to train our model as it is a 
better representation of the movement of elders for whom this 
fall detection system is being built. The types of falls and 
ADLs are given in tables 1 and 2 respectively. 

2.2 Choice of Machine Learning Algorithm 
Choosing the appropriate machine learning algorithm for a 
given problem depends on the following factors: the size of 
the dataset being used, whether we are dealing with labelled 
or unlabelled data, the amount of features in the dataset, the 
type of output the model is expected to generate, prediction 
accuracy of the algorithm, the amount of time required to 
train the model, whether the algorithm is prone to overfitting, 
the number of parameters available within the algorithm to 
tune it and whether the algorithm is able to handle sparse data. 

The algorithm cheat sheet from Microsoft Azure machine 
learning [40] was used in order to have a better understanding 
of how to proceed to find the most appropriate machine 
learning algorithm for the given problem. 

For the fall detection algorithm in this project, the Sisfall 
dataset being used is a labelled dataset having four features 
based on the components of the acceleration as described in  
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Table 1 Types of falls in Sisfall dataset 

Code Activity Trials Duration 

F01 Fall forward while walking caused by a 
slip 5 15 s 

F02 Fall backward while walking caused by 
a slip 5 15 s 

F03 Lateral fall while walking caused by a 
slip 5 15 s 

F04 Fall forward while walking caused by a 
trip 5 15 s 

F05 Fall forward while jogging caused by a 
trip 5 15 s 

F06 Vertical fall while walking caused by 
fainting 5 15 s 

F07 
Fall while walking, with use of hands in 

a table to dampen fall, caused by 
fainting 

5 15 s 

F08 Fall forward when trying to get up 5 15 s 

F09 Lateral fall when trying to get up 5 15 s 

F10 Fall forward when trying to sit down 5 15 s 

F11 Fall backward when trying to sit down 5 15 s 

F12 Lateral fall when trying to sit down 5 15 s 

F13 Fall forward while sitting, caused by 
fainting or falling asleep 5 15 s 

F14 Fall backward while sitting, caused by 
fainting or falling asleep 5 15 s 

F15 Lateral fall while sitting, caused by 
fainting or falling asleep 5 15 s 

Table 2 Types of ADLs in Sisfall dataset 

Code Activity Trials Duration 
D01 Walking slowly 1 100 s 
D02 Walking quickly 1 100 s 
D03 Jogging slowly 1 100 s 
D04 Jogging quickly 1 100 s 
D05 Walking upstairs and downstairs slowly 5 25 s 
D06 Walking upstairs and downstairs quickly 5 25 s 

D07 Slowly sit in a half height chair, wait a 
moment, and up slowly 5 12 s 

D08 Quickly sit in a half height chair, wait a 
moment, and up quickly 5 12 s 

D09 Slowly sit in a low height chair, wait a 
moment, and up slowly 5 12 s 

D10 Quickly sit in a low height chair, wait a 
moment, and up quickly 5 12 s 

D11 Sitting a moment, trying to get up, and 
collapse into a chair 5 12 s 

D12 Sitting a moment, lying slowly, wait a 
moment, and sit again 5 12 s 

D13 Sitting a moment, lying quickly, wait a 
moment, and sit again 5 12 s 

D14 
Being on one’s back change to lateral 

position, wait a moment, 
and change to one’s back 

5 12 s 

D15 Standing, slowly bending at knees, and 
getting up 5 12 s 

D16 Standing, slowly bending without 
bending knees, and getting up 5 12 s 

D17 Standing, get into a car, remain seated 
and get out of the car 5 25 s 

D18 Stumble while walking 5 12 s 

D19 Gently jump without falling (trying to 
reach a high object) 5 12 s 

 
section 2.4.2 and one label each consisting of 200 097 data 
points meaning the size of the dataset is quite large. Here, we 

can eliminate the K-NN and SVM algorithms as they exhibit 
poor performance as the dataset gets larger. One suitable 
algorithm will be the XGBoost algorithm due to its good 
handling of large datasets. 

As the dataset consists of labelled features, supervised 
machine learning methods must be used. Moreover, the 
output will be a number, either 0 or 1, whereby, 0 denotes no 
fall has occurred and 1 denotes a fall. As the output is a 0 or 
1, we will be dealing with a classification problem. From 
these observations, the suitable algorithms will be the 
XGBoost and DT. 

For a fall detection system, fast execution time and 
accuracy of prediction are sine qua non factors and hence an 
algorithm that satisfies these conditions must be selected. 
Furthermore, the training time should be fast in so far as the 
predictions are obtained instantaneously. It is also desired for 
the machine learning algorithm to be flexible to tuning of 
hyper parameters in order to optimise the performance of the 
model created. 

From literature [31-36], the machine learning algorithm 
that mostly satisfies the numerous criteria is the XGBoost 
algorithm. The latter can handle large datasets and sparse 
data, has good performance with numerical features, 
possesses several hyper parameters that can be tuned to 
obtain optimal performance and lastly, it has fast processing 
speed and accurate predictive performance. 

2.3 Model Training 
The XGBoost model was created in the Python programming 
language using the Spyder software. The dataset was 
converted into a csv file and loaded in the Python IDE. The 
dataset contains four features and each row of features has a 
label, either ’0’ or ’1’, whereby, ’0’ denotes no fall and ’1’ 
denotes a fall event. The features and label are extracted from 
the dataset as X and Y respectively ensuring that the headers 
of the data are not selected. Then the dataset is split into the 
training and test datasets using the train test split function 
from the sklearn.model selection library. Initially the 
hyperparameters of the XGBoost algorithm are set to default 
values and the training process is started. Afterwards, the 
model is tested using the test dataset and the prediction 
accuracy and confusion matrix are obtained. Using a trial and 
error process, the hyperparameters’ values are modified until 
the best prediction accuracy is achieved. The tree booster 
hyperparameters used in the model are described below [41]. 

1. Learning rate [default=0.3] 
o Makes the model more robust by shrinking the 

weights on each step. 
o Typical final values to be used: 0.01-0.2 

2. min_child_weight [default=1] 
o Defines the minimum sum of weights of all 

observations required in a child. 
o Used to control over-fitting.  

3. max_depth [default=6] 
o The maximum depth of a tree. 
o Used to control over-fitting as higher depth will 

allow model to learn relations very specific to a 
particular sample. 

o Typical values: 3-10 
4. gamma [default=0] 
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o A node is split only when the resulting split gives 
a positive reduction in the loss function. Gamma 
specifies the minimum loss reduction required to 
make a split. 

5. subsample [default=1] 
o Denotes the fraction of observations to be 

randomly sampled for each tree. 
o Typical values: 0.5-1 

6. colsample_bytree [default=1] 
o Denotes the fraction of columns to be randomly 

samples for each tree. 
o Typical values: 0.5-1 

7. colsample_bylevel [default=1] 
o Denotes the subsample ratio of columns for each 

split, in each level. 
8. lambda [default=1] 

o This used to handle the regularization part of 
XGBoost. Though many data scientists don’t use 
it often, it should be explored to reduce overfitting. 

9. alpha [default=0] 
o Can be used in case of very high dimensionality so 

that the algorithm runs faster when implemented 
10. n_estimators [default=100] 

o Number of boosted trees to fit. 
 

The design process shown in figure 1. 

2.3.1 Performance Metrics 
The sensitivity (SE), specificity (SP), accuracy (AC) and 

false positive rate (FPR) are computed as follows [42]:  

 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (1) 

It measures the capacity of the system to detect falls: 

 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

 (2) 

It is the capacity of the system to detect falls only when 
they occur: 

 𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹

 (3) 

It is the ability of the system to differentiate between falls 
and no-falls: 
 𝐹𝐹𝑆𝑆𝐹𝐹 = 1 − 𝑆𝑆𝑆𝑆 (4) 

False positive rate (FPR) is the number of incorrect fall 
predictions divided by the total number of ADLs, where TP 
and TN are the true positives and negatives; FP and FN the 
false positives and negatives, respectively. 

2.4 Experimental Setup for Testing the Model 
in Real Time 

Figure 2 below illustrates the block diagram of the fall 
detection system designed. 

In this work, the issue of fall detection is tackled using an 
IoT based system consisting of a micro-controller and a 
network of sensors including a tri-axial accelerometer 
embedded in a wearable device that is able to take advantage 
of fog and cloud computing. The wearable device is worn 
around the waist as it has been found as the optimal position 
for detecting falls [43,44,45]. Whenever a fall is detected, an 
alarm is activated by means of a buzzer and the emergency 
contacts are notified immediately through the IoT gateway 

and also by SMS with the aid of a GSM and GPRS module. 
A GPS module is also used so that the location of the person 
is available. Moreover, the details about the fall are stored on 
the cloud in order for healthcare professionals to access the 
data easily. The issue of false alarms is tackled by 
implementing ML techniques in the fall detection algorithm. 
Compared to other systems, here the fall detection system 
algorithm uses the XGBoost machine learning algorithm 
which is known for its fast execution and better predictive 
performance when compared to other machine learning 
algorithms. This helps to increase the accuracy of detecting a 
fall and reduce the probability of false alarms by a greater 
extent. 

The main limitation of this system is that the Sisfall 
dataset used to build the machine learning model is mostly 
data acquired from falls of young or elderly people as it is 
unfeasible to subject elderly people to simulated falls in order 
to form more accurate datasets. Hence the model may not be 
an accurate representation of the movement of older people. 

 

 
Figure 1 Flowchart showing the design process of the 

machine learning model 

2.4.1 The Prototype 
The prototype of the wearable device as shown in figure 3 
was built using a micro-controller, a tri-axial accelerometer, 
a GPS and GSM module and a buzzer all embedded on an 
elastic belt. The microprocessor being used is a Raspberry Pi 
3B running the Linux-based Raspbian operating system. The 
Raspberry Pi was chosen over the Arduino boards due to its 
faster processor and better memory which allows it to run the 
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XGBoost machine learning algorithm. Also, it has integrated 
WiFi allowing easier and more rapid communication with the 
cloud services for IoT. 

 
Figure 2 Block diagram for fall detection system 

 
Figure 3  Components of the prototype 

To obtain the acceleration values, the MPU6050, which is 
a tri-axial accelerometer and gyroscope, was used. This 
sensor was used due to its low power consumption, cheap 
price and high performance. The Waveshare SIM868 
Development Board was used to obtain location through GPS 
and sent fall notification via SMS as it is easy to use, 
consumes low power and has multiple communication 
features such as GPRS, GSM, GNSS and Bluetooth. Finally, 
a buzzer was connected to the Raspberry Pi to sound an alarm 
whenever a fall has been detected so that nearby people can 
attend the fall victim. As per [44] and [45], the optimal 
location for the wearable device is on the waist of the user as 
this body position is near to the centre of gravity of the 
person. Hence, the acceleration values obtained from this 
location will provide more accurate distinction between falls 
and ADLs.  

2.4.2 Feature Extraction 
This process is one of the most important steps in the design 
of the machine learning model. Here, the data obtained from 
the accelerometer is converted into useful data which is 
characteristic to the problem to be solved. From [18] and [19], 
the features giving the best performance with fall detection 
systems are indicated. From these features, four were selected 
and are given as follows: 

1. Feature 1: Sum vector magnitude. 
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 1 = �𝐹𝐹𝑥𝑥2 + 𝐹𝐹𝑦𝑦2 + 𝐹𝐹𝑧𝑧2  (5) 

2. Feature 2: Sum vector magnitude on horizontal plane. 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 2 = �𝐹𝐹𝑥𝑥2 + 𝐹𝐹𝑧𝑧2 (6) 
3. Feature 3: Angle between z-axis and vertical plane. 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 3 = atan2�𝐹𝐹𝑥𝑥2 + 𝐹𝐹𝑦𝑦2 , 𝐹𝐹𝑧𝑧 (7) 
4. Feature 4: Orientation angles with respect to gravity. 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 4 = cos−1 � 𝑎𝑎𝑧𝑧

�𝑎𝑎𝑥𝑥2+𝑎𝑎𝑧𝑧2
� (8)   

In the above equations, 
ax: x-axis accelerometer reading, 
ay: y-axis accelerometer reading, 
az: z-axis accelerometer reading, 
atan2(a, b) function returns value of atan(a/b) in radians. 

2.4.3 Fall Detection Algorithm 
The fall detection algorithm uses the XGBoost model that has 
been trained on the Sisfall dataset to predict if a fall has 
occurred or not. The values of the accelerometer are read and 
converted into the features that required to obtain a 
prediction. The features are then used to test the model and 
get a prediction. The functioning of the fall detection 
algorithm is fully illustrated in the flowchart of figure 4. 

2.4.4 Design of IoT Platform 
The fall detection system used the Blynk IoT platform to 
connect to the cloud services. The communication between 
the device and the IoT platform was set up using the 
Transmission Control Protocol (TCP). The Blynk IoT 
platform was chosen because it is fast, reliable and relatively 
easy to set up. The fall event data was stored in the cloud 
using Google sheets which are easily accessible by healthcare 
professionals willing to see and analyse the data. 

2.4.5 Feature Extraction using MPU6050 Sensor 
The MPU6050 was connected to the Raspberry Pi as shown 
in figure 5. The appropriate libraries were required to be 
installed on the Raspberry Pi for the proper functioning of the 
accelerometer. 

After making the connections, the Python code was run. 
The values of acceleration in the x, y and z axes were 
retrieved from the sensor. Then equations 5 to 8 were used to 
calculate the features required to test the machine learning 
model and each feature was displayed on the Raspberry Pi’s 
terminal. 

 

 
Figure 5 Connection of MPU6050 with Raspberry Pi 
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In the fall detection algorithm, the features extracted from 
the MPU6050 are tested with the XGBoost model for each 
interval of five seconds. Hence, the features were obtained 
from the sensor for 5 seconds and then stored in a csv file 
from which they were fed to the model for prediction using 
the Python pandas library.  

 

 
Figure 4 Fall detection flowchart 

2.4.6 GPS Location and Fall Alert 
To obtain the GPS location, the Python code was run. If a fall 
event occurs, the following SMS is sent to emergency 
contacts as shown in figure 6. 

 

 
Figure 6 Fall Alert received upon fall event. 

2.4.7 Prototype of Wearable Device 
After all the sensors and modules had been tested, they were 
assembled on the elastic belt to make the prototype wearable 
device as shown in the figure 7. 

 
 

 
 
 

Figure 7 Prototype of wearable device 

2.4.8 Fall Detection Algorithm 
To initiate the fall detection algorithm, the wearable device 
was worn by a volunteer. If a fall event occurred, 
“WARNING: A FALL HAS OCCURED” is displayed on the 
Raspberry Pi’s terminal, the buzzer is triggered and a 
notification is sent to emergency contacts. If no fall has been 
detected, “NO FALL HAS OCCURED” is displayed. When 
testing the algorithm, the buzzer was replaced by an LED 
light that turns on upon a fall event and remains off in case of 
no fall as shown in figure 8. 

 

 
Figure 8 State of LED when fall occurs 

2.4.9 Real Time Data 
To evaluate the fall detection system, an experiment 
consisting of 15 fall events and 5 ADLs including walking, 
standing, running, sitting down and lying down was carried 
out on a volunteer of 23 years old. The individual wore the 
wearable device on his waist and carried out the different 
activities at random. Then, a confusion matrix was obtained 
and the accuracy of the system was evaluated. 

3 Results 

3.1 Training of Machine Learning Model 
The Sisfall dataset was loaded in the Python IDE and 75 % 
was used as training data and 25 % for test data. Several trials 

Raspberry Pi GPS and Mobile 
Communication Module 

Accelerometer Buzzer 
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of tuning the different parameters were made until the best 
prediction accuracy was achieved. 

The tree boosting parameters are adjusted to give the best 
results. In particular the colsample_bytree, 
colsample_bynode and colsample_bylevel were increased 
from 0.5 to 1. The performance metrics are shown in table 3. 
T1-T3 are the different trials. 

Table 3 Boosting hyperparameters and performance 
metrics 

Hyperparameter T1 T2 T3 

colsample_bytree 0.5 0.8 1 

colsample_bynode 0.5 0.8 1 

colsample_bylevel 0.5 0.8 1 

subsample 1 1 1 

learning rate 0.3 0.3 0.3 

max_depth 1 5 10 

alpha 0 0 0 

gamma 2 2 2 

Min_child_weight 1 1 1 

n_estimators 15 15 15 

    

TP 24960 25074 20182 

FP 2315 1729 1348 

FN 1297 1183 841 

TN 21660 22246 17815 

    

SE 95.1 95.5 96 

SP 90.3 92.8 93 

AC 92.8 94.2 94.6 

FPR 9.7 7.2 7 

 
From table 3, trial 3 (T3) yields the best predictive 

performance with an accuracy of 94.6 % and an FPR of 7 %. 
Therefore, the parameters from trial 4 were used to create the 
XGBoost model. 

By tuning the tree-specific parameters like 
colsample_bytree, colsample_bynode, colsample_bytlevel, 
max_depth of the tree, we can change the sensitivity and 
specificity and hence the false positive rate. Increasing the 
value of these parameters tend to reduce the FPR and increase 
the SE. It is observed that tuning these parameters to the 
maximum limit gives the best results with SE = 96 %, SP = 
93 %, AC = 94.6 % and FPR = 7% when only elderly 
volunteers were considered from the Sisfall dataset.  

3.2 Discussion 
In [27] an accuracy of 98.72 % was obtained with the Sisfall 
dataset which is more than the 96 % obtained by the XGBoost 
algorithm. Since we have trained the model on the data from 
the elderly volunteers only rather than the whole dataset 
including young volunteers, a direct comparison cannot be 
done. Liu [24] used data mostly from young volunteers to 
train their model. The high accuracy of 99.14 % cannot be 
compared to our work in respect to the above reasoning. Also, 

in [22], an accuracy of 96.7 % was reported. 12 subjects 
attended the experiments and the fall training data was 
obtained from young adult volunteers only. Previous works 
have demonstrated that the accuracy of the approaches where 
mainly young volunteers are used is significantly reduced 
when tested on institutionalized [47] and independent [17] 
elderly people [38]. 

As it can be seen in table 4, the XGBoost algorithm 
outperforms the work done by Mauldin et al. [20] and 
Vallabh et al. [28] significantly. Also, the XGBoost 
algorithm has a better accuracy of 96 % as compared to 91 % 
[4] and 93 % [19] that used DT and NB respectively. The 
false positive rate and sensitivity of the XGBoost algorithm 
is better than that of [19]. 

Table 4 Comparison with past studies 

 ML SE 
% 

AC 
% 

SP 
% 

FPR 
% 

Mauldin et al. 
[20] 

NB 66 64 62 38 

SVM 26 56 86 14 

Deep 
Learning 86 70 54 46 

Yacchirema et 
al. [4] DT 100 91 94 6 

Ngu et al.[19] NB 94 93 92 8 

Wang et al. 
[25] RF n/a n/a 82 18 

Vallabh et al. 
[28] K-NN 90.7 87.5 83.8 16.2 

Proposed XGBoost 97 96 93 7 

3.3 Real Time Tests 
It is also noted that when testing the algorithm with real time 
data, we obtained an SE of 100 % as shown in table 5. This 
demonstrates that the XGBoost model does very well in 
predicting falls. Two false negatives were obtained and the 
model has a higher false positive rate of 28 %. Our XGBoost 
model performs the best on detecting falls. However, the 
XGBoost is not very accurate on ADLs. Still, the results are 
still much better than that of [20].  

Table 5 Real time tests with hyperparamters T4 

TP 12 

FP 2 

FN 0 

TN 5 

SE 100 

SP 71.4 

AC 89.5 

FPR 28.6 

 
The fall detection sensitivity of 100 % with real-life falls 

presented in the present study is higher than with 
experimental falls (97 %), but the SP is lower by 23 %. 

 We recognize that our fall detection model is tested using 
data from a healthy and young volunteer, which might not 
reflect the actual fall data from elderly people. Furthermore, 

http://www.saimeche.org.za/


Fall Detection System using XGBoost and IoT 
 

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18 
http://dx.doi.org/10.17159/2309-8988/2020/v36a2 

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved. 

16 

the real time falls database included less subjects and number 
of ADLs considered was limited as compared to the Sisfall 
dataset, which may explain the difference. However, the 
results from the Sisfall dataset with the XGBoost algorithm 
look promising in fall detection and should be investigated 
further. An extension of this work would be to test the model 
with a larger number of elder participants and ADLs. 
Additionally we should investigate the change in the position 
of the wearable device in the model. Also, in order to increase 
the effectiveness of the fall detection systems a false alarm 
button could be included to  allow the user to cancel ADL 
detected as falls (false positives) [29]. 

4 Conclusion 
Falls among elderly people is a prominent issue that needs to 
be addressed so as to increase the QoL of the elderly. This 
project has presented a method to tackle this issue by 
designing and implementing a fall detection system that 
incorporates machine learning in its decision making and IoT 
to store data and send alerts. The machine learning algorithm 
used was XGBoost which is known for its accuracy and 
speed. The machine learning model was trained using the 
online Sisfall dataset. For fall prediction, the features to be 
tested with the model are obtained from the accelerometer 
embedded on the wearable device which is worn on the waist 
by the user. The waist was found to be the optimal location 
for the wearable device and moreover, in this position, the 
elders can easily wear it. In case of a fall event, a buzzer is 
sounded to alert nearby people and emergency contacts and 
healthcare professionals are notified. The GPS location of the 
fall victim is also provided. 

The XGBoost algorithm outperforms the work done by 
Mauldin [20] and Vallabh et al. [28] significantly when tested 
using the Sisfall dataset. The XGBoost algorithm has a better 
accuracy of 96 % as compared to 91 % [4] and 93 % [19] that 
used DT and NB respectively. The fall detection sensitivity 
of 100 % with real-life falls presented in the present study is 
higher than with experimental falls (97 %), but the SP is 
lower by 23 %. A false alarm button could be included in the 
system to prevent false alarms. Further tests with other 
XGBoost parameters need to be done to optimize the 
performance of the model. The number of participants should 
also be increased. 

The details of the fall event is stored on the cloud to allow 
easy access to the data. The system was tested with a series 
of falls and ADLs and its accuracy and precision were 
evaluated. The error rate was small showing that the proposed 
system can detect falls with high accuracy and reduces the 
probability of false alarms. 

To improve the system, the machine learning model can 
be designed and trained on a cloud platform such as Google 
Cloud which supports the XGBoost algorithm. This will 
allow more rapid data transfer and quicker response as all the 
processing will be done in cloud. Moreover, new machine 
learning algorithms such as neural networks, can be used to 
design the fall detection algorithm and try to improve the 
predictive performance. 
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