
Fall Detection System using XGBoost and
IoT

DK Cahoolessura, B Rajkumarsinghb
Received 30 October 2019, in revised form 26 Nov 2019 and accepted 12 June 2020

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

8

Abstract: This project aims to design and implement a fall
detection system for the elders using machine learning
techniques and Internet-of-Things (IoT). The main issue
with fall detection systems is false alarms and hence
incorporating machine learning in the fall detection
algorithm can tackle this problem. Therefore, choosing the
right machine learning algorithm for the given problem is
essential and several factors need to be considered in
making that choice. For this project, the XGBoost
algorithm is used and the machine learning model is trained
on the Sisfall dataset. A wearable device that is worn on the
waist is designed using an accelerometer, a microcontroller,
a Global Positioning System (GPS) module and a buzzer.
The acceleration data obtained is converted into features
and fed into the machine learning model which will then
make a prediction. If a fall event has occurred, the buzzer is
activated and emergency contacts of the victim are notified
immediately using IoT and Global System for Mobile
Communications (GSM). This allows the fall victim to be
attended quickly, thus reducing the negative consequences
of the fall. The details of the fall are stored on the cloud so
that they can be easily accessed by healthcare professionals.
Testing the system concluded that the XGBoost machine
learning algorithm is well suited for this problem due to the
small percentage error obtained.

Additional keywords: Fall detection, machine learning,
XGBoost , IoT.

1 Introduction
In the past decade, the world population has been ageing due
to an increase in life expectancy and medical advances [1,2].
According to the United Nations, in 2017, there was
approximately 962 million people aged 60 or above globally
which accounts for 13 % of the world population [1]. The
population of elders around the world is increasing by about
3 % each year [1]. Due to this ageing population, measures
need to be taken to enhance the Quality of Life (QoL) of
elders by ensuring that they have an active and independent
life. Falls represent one of the main health risks to elders
worldwide and the rapidly ageing population enhances this
threat to public health [2]. As people get older, they become
more fragile and their senses deteriorates, for example, their
vision worsens and their ability to perceive the surroundings
diminishes hence making them more prone to falls [3].
Moreover, some of the medicines prescribed to elderly people
for medical problems may cause a decrease in mental

alertness, hence increasing the probability of a fall.
According to the World Health Organization (WHO), about
30 % of people above 65 are victims of accidental falls
annually and for people above 80, the fall rate reaches about
50 % [4]. Falls more often occur indoor and are associated to
activities of daily living (ADLs). In order to tackle this issue,
 fall detection systems have been designed which make use
of sensors and other components to detect falls and allow
timely assistance to the fall victims by alerting emergency
contacts and healthcare personnel immediately after a fall
event [4-7].

A robust fall detection system monitors the fall and alerts
caregivers, hence alleviating their burden and diminishes the
workload on resource constrained healthcare systems [8].
Fall detection systems can be classified into two main
categories: context-aware systems and wearable device based
approaches [9]. Context-aware systems use networks of
sensors deployed in the environment to detect falls. They
include ambient sensors as infrared, floor, radar,
microphones, and pressure sensors as well as vision-based
devices [10]. Wearable device based approaches consist of
various sensors embedded in a fabric that is worn by the user
which can detect the latter’s position and motion. Wearable
sensors with accelerometers and gyroscopes are frequently
used in fall detectors [10]. Smart phones equipped with
accelerometer sensors have also been used as fall detection
systems [11-14]. A mobile application is used to analyse the
data from the sensor and if a threshold value is detected, a fall
is detected. A smart home monitoring unit that uses the
ZigBee wireless sensors has been developed which can
monitor the daily activities of the elder in real time by the use
of sensors placed on the household appliances used by the
elder [15,16]. This method reduces false alarms and can also
predict unusual behaviour. Systems using omni-directional
cameras have been developed which use image and audio
processing techniques coupled with machine learning
techniques to detect if a fall event has occurred. These
systems have proven to be robust systems, but they have
numerous drawbacks including high cost, lack of privacy as
they are located indoors.

For wearable devices, the most common used sensors are
tri-axial accelerometers and gyroscopes. These systems use a
threshold based fall detection algorithm to detect falls
[17,18]. The wearable devices have numerous advantages
including low power consumption, low weight, small size
and ease of operation. One main drawback is that being a
wearable device, the elderly can often forget to wear it. IoT
is being incorporated in wearable fall detection systems to
help decrease the workload of the device and prolong its
operational longevity [19,4,20]. When a fall is detected, the
IoT gateway is able to notify the emergency contacts and
healthcare professionals about the details of the fall. The data
about each fall event is stored on the cloud and new models
can be built using this information.

a. Faculty of Engineering, University of Mauritius,
dashil.cahoolessur@umail.uom.ac.mu

b. Department of Electrical and Electronic Engineering,
University of Mauritius,
b.rajkumarsingh@uom.ac.mu

http://www.saimeche.org.za/
mailto:dashil.cahoolessur@umail.uom.ac.mu
mailto:b.rajkumarsingh@uom.ac.mu

Fall Detection System using XGBoost and IoT

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

9

When a fall detection system is being designed, the
following aspects need to be considered: obtrusiveness,
privacy, energy consumption, computational cost, noise
distorting the signal being monitored and defining a threshold
for threshold-based systems [21]. One of the main issues
when designing a fall detection system is to implement a fall
detection algorithm that is reliable in detecting falls and has
a low probability of false alarms.

Nowadays, machine learning (ML) techniques are being
implemented in fall detection algorithms so as to increase
accuracy of predicting a fall and decreasing the probability of
false alarms in a fall detection system. They include Support
Vector Machine (SVM), Decision Tree (DT), Naive Bayes
(NB), Least Squares Method (LSM), K-Nearest Neighbour
(K-NN), and Artificial Neural Networks (ANNs), XGBoost,
Random Forest (RF), LightGBM [17,19,21-30]. The related
studies and results are given in the following paragraphs.

In [22], the issue of false alarms in a fall detection system
was tackled using the one-class SVM machine learning
algorithm. Here, the sensor used to get the acceleration data
was the tri-axial accelerometer, MMA7260Q. The 12
volunteers, eight males and four females aged from 10 to 70
years old with height from 1.36 m to 1.80 m were selected to
attend the experiments. The fall training data was obtained
from young adult volunteers. The ADLs data was obtained
from both young adults and elders. This system had a fall
prediction accuracy of 96.7 %. However, it does not include
any method of updating the machine learning model and
alerting the emergency contacts if a fall event occurs. The
false alarm rate was also not reported.

In [23], activity recognition coupled with machine
learning was used to distinguish between fall and non-fall
events. Four approaches were used to be able to detect falls;
first being the use of accelerometers, secondly, the use of
gyroscopes, then, visual detection and finally, using video to
reconstruct posture of the users. Three persons attended the
experiments. Recordings of walking, falling, standing, sitting
down and lying were used to obtain the coordinates of 12
different body parts during each activity. These coordinates
were used to obtain the three attributes used for machine
learning namely, reference, body and angle attributes. These
attributes were used to train eight machine learning models
among C4.5 decision trees, RIPPER decision trees, NB, K-
NN, SVM, RF, Bagging and Adaboost M1 boosting with an
accuracy of 94.1 %, 93.1 %, 89.5 %, 97.1 %, 97.7 %, 97.2 %,
97.2 %, 96.3 % and 93.7 % respectively. SVM was found to
have the highest accuracy. The false alarm rates were not
mentioned.

The SVM machine learning algorithm was used in [24] to
implement the fall detection algorithm. The device was worn
on the waist of the subject and consisted of tri-axial
accelerometer, a microprocessor and a Bluetooth module.
Four features were used to train the model using two-fold
cross-validation on the dataset that was split in 50 % training
data and 50 % test data. The system achieved an accuracy of
99.14 %, a sensitivity of 99.60 %, and a false positive rate of
1.3 %. The activities were performed by two groups of young
volunteers (20 subjects) and one group of elderly volunteers
(five subjects). Here, the model was trained mostly with data
from young volunteers.

In [19] it is proposed to use only the streaming
accelerometer data from a commodity-based smartwatch
device to detect falls. The smartwatch is paired with a
smartphone as a means for performing the computation
necessary for the prediction of falls in real time without
incurring latency in communicating with a cloud server while
also preserving data privacy. Both SVM and NB machine
learning algorithms for the creation of the fall model were
experimented. They showed that using a NB machine
learning model, an accuracy of 93.33 % and a false positive
rate of 8% can be obtained.

A novel and truly unobtrusive detection method was
proposed based on the advanced wireless technologies,
WiFall [25]. WiFall employs the time variability and special
diversity of Channel State Information (CSI) as the indicator
of human activities. As CSI is readily available in prevalent
in-use wireless infrastructures, WiFall withdraws the need for
hardware modification, environmental setup and worn or
taken devices. WiFall is implemented on laptops equipped
with commercial 802.11n NICs. As demonstrated by the
experimental results, WiFall with SVM algorithm yielded
94 % detection precision with false positive rate of 13 % on
average.

In [4], a 6LoWPAN (IPv6 over Low -Power Wireless
Personal Area Networks) wearable fall detection device
consisting of a tri-axial accelerometer was designed and
implemented. The fall detection algorithm was implemented
using (DT) algorithm and the model was created from the
Sisfall dataset using the BigML Data Analysis tool [26] and
was stored in the cloud using MongoDB. A smart IoT
gateway was set up which allowed the data from the
accelerometer to be sent to a Big Data Analyser which will
process and analyse the data from the sensor to decide if a fall
has occurred or not. The model is updated each time new
acceleration data is fed to it in order to increase its predictive
accuracy. Whenever a fall is detected, the emergency contacts
are notified through a MQ Telemetry Transport (MQTT)
broker and the GPS information of the fall victim is also
included in the notification. The data of each fall event is
stored on the cloud so that medical professionals can easily
access the data. The system had a fall prediction accuracy of
91.67 %, precision of 93.75 % and a false positive rate of
8 %. The fall detection system designed in [27] makes use
IoT and an ensemble machine learning algorithm and consists
of a tri-axial accelerometer on a 6LowPAN wearable device.
This device is quite similar to that in [4] apart from the
machine learning algorithm being used. The ensemble
machine learning algorithm yielded an accuracy of 98.72 %
as compared to 91.67 % in [4].

Vallabh et al. [28] investigated five different
classification algorithms for fall detection using the MobiFall
dataset. The K-NN algorithm obtained an overall accuracy of
87.5 % with a sensitivity of 90.70 %, and a false positive rate
of 16.22 %.

In [17], the IoT based fall detection system is a
smartwatch with a tri-axial accelerometer embedded in it.
The smartwatch is used in parallel with a smartphone
containing an Android application that uses the accelerometer
data for fall prediction. The fall detection algorithm was
implemented using SVM, NB and deep learning algorithms.
For SVM and NB, four features were used to create the model

http://www.saimeche.org.za/

Fall Detection System using XGBoost and IoT

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

10

whereas deep learning does not require feature extraction.
Whenever a fall is detected, emergency contacts are alerted
and the fall data is stored on the cloud so that it is available
to medical professionals. When predicting falls in real-time,
SVM obtained an accuracy of 64 %, NB got 56 % and deep
learning achieved 70 %. The respective false positive rates
were 14 %, 18 % and 46 %. The deep learning model was the
better choice, but the accuracy of its predictive performance
dropped from 99 % with an offline dataset to 70 % in real-
time. The drop in performance can be explained as follows.
These systems are tested in a controlled environment and are
optimized for a given set of sensor types, sensor positions,
and subjects. Validation tests with elderly people
significantly reduce the fall detection performance of the
tested features [17].

In [29], the long-term fall detection sensitivity and false
alarm rate of a fall detection prototype was studied in real-life
use using an automatic accelerometric fall detection system.
The fall detection system detected 12 out of 15 real-life falls,
having a sensitivity of 80.0 %, with a false alarm rate of 0.049
alarms per usage hour with the implemented real-time
system. It was also found that by some slight variation of data
analysis the false alarm rate was reduced to 0.025 false alarms
per hour, equating to 1 false fall alarm per 40 usage hours.

A low-power fall detector using triaxial accelerometry
and barometric pressure sensing was proposed that minimizes
its power consumption using co-design of hardware and
firmware and threshold optimization technique [30].
Additionally, the thresholds of the fall detection algorithm
were optimized to achieve a balance between sensitivity and
false alarm rate. The fall detector achieved a high sensitivity
(91 %) with a low false alarm rate (0.1149 alarms per hour).

XGBoost [31] is short for eXtreme Gradient Boosting
package. XGBoost is an open source, efficient and popular
implementation of gradient boosted decision trees. It belongs
to a broader umbrella of Distributed Machine Learning
Community (DMLC). It was made by the contributions of
many developers with main contributions from Tianqi Chen
and Carlos Guestrin [31,32]. It has been used by several
Kaggle competition winners. XGBoost strictly prioritizes
computational speed and model performances [32].
Advantages of XGBoost include ease of use, efficiency,
feasibility, easy to install, highly developed R/Python
interface for users, automatic parallel computation on a single
machine and good accuracy for most data sets [33-35].

In [36], a self-adaptive system was designed so that it is
able to adapt the fall detection algorithm to the current
position of the wearable using XGBoost [31] and LightGBM
[37]. These algorithms are known to perform better than the
RF in numerous machine learning applications. These
algorithms are tree-based ensemble methods, but differ
significantly from the RF in the sense that the RF relies on
bagging which decreases the variance of the prediction where
XGBoost and LightGBM use boosting which should reduce
the bias.

A fall detection system should not miss a single fall due
to the medical implications every fall may carry on which
implies a fall detection model with a high Recall or
Sensitivity. A missed fall is represented in our evaluation
experiments as a false negative (FN). We also do not want to
have too many false alarms, which in our evaluation as

represented as false positives (FPs), and thus, we want to
achieve a high sensitivity and a low false alarm rate. In this
respect, an IOT-based fall detection system is designed and
implemented with machine learning techniques that will be
able to detect falls accurately and minimize the negative
consequences of a fall allowing elderly people to live an
active and independent life. The objectives are to design and
implement an accurate and reliable fall detection system, to
detect falls and alert emergency contacts instantaneously for
immediate assistance, to store the data about the fall event
on the cloud to allow healthcare professionals to access the
data easily, to be able to distinguish between real falls and
false alarms using machine learning techniques, to use the
data stored on the cloud to train the system so as to increase
accuracy of detection and to provide GPS location of the fall
victim in case of a fall.

Section 2 describes the methodology used. Section 2 also
describes how the machine learning model was designed
together with the electrical and logical design of the fall
detection system. The implementation and testing of the fall
detection system being designed are also mentioned in this
section. Section 3 provides an analysis of the final system by
performing experiments and analysing the results. Section 4
concludes the research work.

2 Methodology

2.1 Training Data from Sisfall
The training data for the model was acquired from the Sisfall:
A Fall and Movement Dataset [38,39] which contains data
from both young and elderly participants. The dataset
consists of 4505 files of which 1798 are related to 15 types of
fall and 2707 files are related to 19 types of ADL. The
movement data was measured and collected at a sample
frequency of 200 Hz using two triaxle accelerometers
(ADXL345 and ITG3200) and gyroscope (MMA8451Q).

The participants were 23 young adults between the age of
19 to 30 and 15 elders between the ages 60 to 75 years old. In
this project, the data obtained from the elderly between the
ages 60 to 75 years old is used to train our model as it is a
better representation of the movement of elders for whom this
fall detection system is being built. The types of falls and
ADLs are given in tables 1 and 2 respectively.

2.2 Choice of Machine Learning Algorithm
Choosing the appropriate machine learning algorithm for a
given problem depends on the following factors: the size of
the dataset being used, whether we are dealing with labelled
or unlabelled data, the amount of features in the dataset, the
type of output the model is expected to generate, prediction
accuracy of the algorithm, the amount of time required to
train the model, whether the algorithm is prone to overfitting,
the number of parameters available within the algorithm to
tune it and whether the algorithm is able to handle sparse data.

The algorithm cheat sheet from Microsoft Azure machine
learning [40] was used in order to have a better understanding
of how to proceed to find the most appropriate machine
learning algorithm for the given problem.

For the fall detection algorithm in this project, the Sisfall
dataset being used is a labelled dataset having four features
based on the components of the acceleration as described in

http://www.saimeche.org.za/

Fall Detection System using XGBoost and IoT

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

11

Table 1 Types of falls in Sisfall dataset

Code Activity Trials Duration

F01 Fall forward while walking caused by a
slip 5 15 s

F02 Fall backward while walking caused by
a slip 5 15 s

F03 Lateral fall while walking caused by a
slip 5 15 s

F04 Fall forward while walking caused by a
trip 5 15 s

F05 Fall forward while jogging caused by a
trip 5 15 s

F06 Vertical fall while walking caused by
fainting 5 15 s

F07
Fall while walking, with use of hands in

a table to dampen fall, caused by
fainting

5 15 s

F08 Fall forward when trying to get up 5 15 s

F09 Lateral fall when trying to get up 5 15 s

F10 Fall forward when trying to sit down 5 15 s

F11 Fall backward when trying to sit down 5 15 s

F12 Lateral fall when trying to sit down 5 15 s

F13 Fall forward while sitting, caused by
fainting or falling asleep 5 15 s

F14 Fall backward while sitting, caused by
fainting or falling asleep 5 15 s

F15 Lateral fall while sitting, caused by
fainting or falling asleep 5 15 s

Table 2 Types of ADLs in Sisfall dataset

Code Activity Trials Duration
D01 Walking slowly 1 100 s
D02 Walking quickly 1 100 s
D03 Jogging slowly 1 100 s
D04 Jogging quickly 1 100 s
D05 Walking upstairs and downstairs slowly 5 25 s
D06 Walking upstairs and downstairs quickly 5 25 s

D07 Slowly sit in a half height chair, wait a
moment, and up slowly 5 12 s

D08 Quickly sit in a half height chair, wait a
moment, and up quickly 5 12 s

D09 Slowly sit in a low height chair, wait a
moment, and up slowly 5 12 s

D10 Quickly sit in a low height chair, wait a
moment, and up quickly 5 12 s

D11 Sitting a moment, trying to get up, and
collapse into a chair 5 12 s

D12 Sitting a moment, lying slowly, wait a
moment, and sit again 5 12 s

D13 Sitting a moment, lying quickly, wait a
moment, and sit again 5 12 s

D14
Being on one’s back change to lateral

position, wait a moment,
and change to one’s back

5 12 s

D15 Standing, slowly bending at knees, and
getting up 5 12 s

D16 Standing, slowly bending without
bending knees, and getting up 5 12 s

D17 Standing, get into a car, remain seated
and get out of the car 5 25 s

D18 Stumble while walking 5 12 s

D19 Gently jump without falling (trying to
reach a high object) 5 12 s

section 2.4.2 and one label each consisting of 200 097 data
points meaning the size of the dataset is quite large. Here, we

can eliminate the K-NN and SVM algorithms as they exhibit
poor performance as the dataset gets larger. One suitable
algorithm will be the XGBoost algorithm due to its good
handling of large datasets.

As the dataset consists of labelled features, supervised
machine learning methods must be used. Moreover, the
output will be a number, either 0 or 1, whereby, 0 denotes no
fall has occurred and 1 denotes a fall. As the output is a 0 or
1, we will be dealing with a classification problem. From
these observations, the suitable algorithms will be the
XGBoost and DT.

For a fall detection system, fast execution time and
accuracy of prediction are sine qua non factors and hence an
algorithm that satisfies these conditions must be selected.
Furthermore, the training time should be fast in so far as the
predictions are obtained instantaneously. It is also desired for
the machine learning algorithm to be flexible to tuning of
hyper parameters in order to optimise the performance of the
model created.

From literature [31-36], the machine learning algorithm
that mostly satisfies the numerous criteria is the XGBoost
algorithm. The latter can handle large datasets and sparse
data, has good performance with numerical features,
possesses several hyper parameters that can be tuned to
obtain optimal performance and lastly, it has fast processing
speed and accurate predictive performance.

2.3 Model Training
The XGBoost model was created in the Python programming
language using the Spyder software. The dataset was
converted into a csv file and loaded in the Python IDE. The
dataset contains four features and each row of features has a
label, either ’0’ or ’1’, whereby, ’0’ denotes no fall and ’1’
denotes a fall event. The features and label are extracted from
the dataset as X and Y respectively ensuring that the headers
of the data are not selected. Then the dataset is split into the
training and test datasets using the train test split function
from the sklearn.model selection library. Initially the
hyperparameters of the XGBoost algorithm are set to default
values and the training process is started. Afterwards, the
model is tested using the test dataset and the prediction
accuracy and confusion matrix are obtained. Using a trial and
error process, the hyperparameters’ values are modified until
the best prediction accuracy is achieved. The tree booster
hyperparameters used in the model are described below [41].

1. Learning rate [default=0.3]
o Makes the model more robust by shrinking the

weights on each step.
o Typical final values to be used: 0.01-0.2

2. min_child_weight [default=1]
o Defines the minimum sum of weights of all

observations required in a child.
o Used to control over-fitting.

3. max_depth [default=6]
o The maximum depth of a tree.
o Used to control over-fitting as higher depth will

allow model to learn relations very specific to a
particular sample.

o Typical values: 3-10
4. gamma [default=0]

http://www.saimeche.org.za/

Fall Detection System using XGBoost and IoT

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

12

o A node is split only when the resulting split gives
a positive reduction in the loss function. Gamma
specifies the minimum loss reduction required to
make a split.

5. subsample [default=1]
o Denotes the fraction of observations to be

randomly sampled for each tree.
o Typical values: 0.5-1

6. colsample_bytree [default=1]
o Denotes the fraction of columns to be randomly

samples for each tree.
o Typical values: 0.5-1

7. colsample_bylevel [default=1]
o Denotes the subsample ratio of columns for each

split, in each level.
8. lambda [default=1]

o This used to handle the regularization part of
XGBoost. Though many data scientists don’t use
it often, it should be explored to reduce overfitting.

9. alpha [default=0]
o Can be used in case of very high dimensionality so

that the algorithm runs faster when implemented
10. n_estimators [default=100]

o Number of boosted trees to fit.

The design process shown in figure 1.

2.3.1 Performance Metrics
The sensitivity (SE), specificity (SP), accuracy (AC) and

false positive rate (FPR) are computed as follows [42]:

 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (1)

It measures the capacity of the system to detect falls:

 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

 (2)

It is the capacity of the system to detect falls only when
they occur:

 𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹

 (3)

It is the ability of the system to differentiate between falls
and no-falls:
 𝐹𝐹𝑆𝑆𝐹𝐹 = 1 − 𝑆𝑆𝑆𝑆 (4)

False positive rate (FPR) is the number of incorrect fall
predictions divided by the total number of ADLs, where TP
and TN are the true positives and negatives; FP and FN the
false positives and negatives, respectively.

2.4 Experimental Setup for Testing the Model
in Real Time

Figure 2 below illustrates the block diagram of the fall
detection system designed.

In this work, the issue of fall detection is tackled using an
IoT based system consisting of a micro-controller and a
network of sensors including a tri-axial accelerometer
embedded in a wearable device that is able to take advantage
of fog and cloud computing. The wearable device is worn
around the waist as it has been found as the optimal position
for detecting falls [43,44,45]. Whenever a fall is detected, an
alarm is activated by means of a buzzer and the emergency
contacts are notified immediately through the IoT gateway

and also by SMS with the aid of a GSM and GPRS module.
A GPS module is also used so that the location of the person
is available. Moreover, the details about the fall are stored on
the cloud in order for healthcare professionals to access the
data easily. The issue of false alarms is tackled by
implementing ML techniques in the fall detection algorithm.
Compared to other systems, here the fall detection system
algorithm uses the XGBoost machine learning algorithm
which is known for its fast execution and better predictive
performance when compared to other machine learning
algorithms. This helps to increase the accuracy of detecting a
fall and reduce the probability of false alarms by a greater
extent.

The main limitation of this system is that the Sisfall
dataset used to build the machine learning model is mostly
data acquired from falls of young or elderly people as it is
unfeasible to subject elderly people to simulated falls in order
to form more accurate datasets. Hence the model may not be
an accurate representation of the movement of older people.

Figure 1 Flowchart showing the design process of the

machine learning model

2.4.1 The Prototype
The prototype of the wearable device as shown in figure 3
was built using a micro-controller, a tri-axial accelerometer,
a GPS and GSM module and a buzzer all embedded on an
elastic belt. The microprocessor being used is a Raspberry Pi
3B running the Linux-based Raspbian operating system. The
Raspberry Pi was chosen over the Arduino boards due to its
faster processor and better memory which allows it to run the

http://www.saimeche.org.za/

Fall Detection System using XGBoost and IoT

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

13

XGBoost machine learning algorithm. Also, it has integrated
WiFi allowing easier and more rapid communication with the
cloud services for IoT.

Figure 2 Block diagram for fall detection system

Figure 3 Components of the prototype

To obtain the acceleration values, the MPU6050, which is
a tri-axial accelerometer and gyroscope, was used. This
sensor was used due to its low power consumption, cheap
price and high performance. The Waveshare SIM868
Development Board was used to obtain location through GPS
and sent fall notification via SMS as it is easy to use,
consumes low power and has multiple communication
features such as GPRS, GSM, GNSS and Bluetooth. Finally,
a buzzer was connected to the Raspberry Pi to sound an alarm
whenever a fall has been detected so that nearby people can
attend the fall victim. As per [44] and [45], the optimal
location for the wearable device is on the waist of the user as
this body position is near to the centre of gravity of the
person. Hence, the acceleration values obtained from this
location will provide more accurate distinction between falls
and ADLs.

2.4.2 Feature Extraction
This process is one of the most important steps in the design
of the machine learning model. Here, the data obtained from
the accelerometer is converted into useful data which is
characteristic to the problem to be solved. From [18] and [19],
the features giving the best performance with fall detection
systems are indicated. From these features, four were selected
and are given as follows:

1. Feature 1: Sum vector magnitude.
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 1 = �𝐹𝐹𝑥𝑥2 + 𝐹𝐹𝑦𝑦2 + 𝐹𝐹𝑧𝑧2 (5)

2. Feature 2: Sum vector magnitude on horizontal plane.

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 2 = �𝐹𝐹𝑥𝑥2 + 𝐹𝐹𝑧𝑧2 (6)
3. Feature 3: Angle between z-axis and vertical plane.

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 3 = atan2�𝐹𝐹𝑥𝑥2 + 𝐹𝐹𝑦𝑦2 , 𝐹𝐹𝑧𝑧 (7)
4. Feature 4: Orientation angles with respect to gravity.

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 4 = cos−1 � 𝑎𝑎𝑧𝑧

�𝑎𝑎𝑥𝑥2+𝑎𝑎𝑧𝑧2
� (8)

In the above equations,
ax: x-axis accelerometer reading,
ay: y-axis accelerometer reading,
az: z-axis accelerometer reading,
atan2(a, b) function returns value of atan(a/b) in radians.

2.4.3 Fall Detection Algorithm
The fall detection algorithm uses the XGBoost model that has
been trained on the Sisfall dataset to predict if a fall has
occurred or not. The values of the accelerometer are read and
converted into the features that required to obtain a
prediction. The features are then used to test the model and
get a prediction. The functioning of the fall detection
algorithm is fully illustrated in the flowchart of figure 4.

2.4.4 Design of IoT Platform
The fall detection system used the Blynk IoT platform to
connect to the cloud services. The communication between
the device and the IoT platform was set up using the
Transmission Control Protocol (TCP). The Blynk IoT
platform was chosen because it is fast, reliable and relatively
easy to set up. The fall event data was stored in the cloud
using Google sheets which are easily accessible by healthcare
professionals willing to see and analyse the data.

2.4.5 Feature Extraction using MPU6050 Sensor
The MPU6050 was connected to the Raspberry Pi as shown
in figure 5. The appropriate libraries were required to be
installed on the Raspberry Pi for the proper functioning of the
accelerometer.

After making the connections, the Python code was run.
The values of acceleration in the x, y and z axes were
retrieved from the sensor. Then equations 5 to 8 were used to
calculate the features required to test the machine learning
model and each feature was displayed on the Raspberry Pi’s
terminal.

Figure 5 Connection of MPU6050 with Raspberry Pi

http://www.saimeche.org.za/

Fall Detection System using XGBoost and IoT

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

14

In the fall detection algorithm, the features extracted from
the MPU6050 are tested with the XGBoost model for each
interval of five seconds. Hence, the features were obtained
from the sensor for 5 seconds and then stored in a csv file
from which they were fed to the model for prediction using
the Python pandas library.

Figure 4 Fall detection flowchart

2.4.6 GPS Location and Fall Alert
To obtain the GPS location, the Python code was run. If a fall
event occurs, the following SMS is sent to emergency
contacts as shown in figure 6.

Figure 6 Fall Alert received upon fall event.

2.4.7 Prototype of Wearable Device
After all the sensors and modules had been tested, they were
assembled on the elastic belt to make the prototype wearable
device as shown in the figure 7.

Figure 7 Prototype of wearable device

2.4.8 Fall Detection Algorithm
To initiate the fall detection algorithm, the wearable device
was worn by a volunteer. If a fall event occurred,
“WARNING: A FALL HAS OCCURED” is displayed on the
Raspberry Pi’s terminal, the buzzer is triggered and a
notification is sent to emergency contacts. If no fall has been
detected, “NO FALL HAS OCCURED” is displayed. When
testing the algorithm, the buzzer was replaced by an LED
light that turns on upon a fall event and remains off in case of
no fall as shown in figure 8.

Figure 8 State of LED when fall occurs

2.4.9 Real Time Data
To evaluate the fall detection system, an experiment
consisting of 15 fall events and 5 ADLs including walking,
standing, running, sitting down and lying down was carried
out on a volunteer of 23 years old. The individual wore the
wearable device on his waist and carried out the different
activities at random. Then, a confusion matrix was obtained
and the accuracy of the system was evaluated.

3 Results

3.1 Training of Machine Learning Model
The Sisfall dataset was loaded in the Python IDE and 75 %
was used as training data and 25 % for test data. Several trials

Raspberry Pi GPS and Mobile
Communication Module

Accelerometer Buzzer

http://www.saimeche.org.za/

Fall Detection System using XGBoost and IoT

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

15

of tuning the different parameters were made until the best
prediction accuracy was achieved.

The tree boosting parameters are adjusted to give the best
results. In particular the colsample_bytree,
colsample_bynode and colsample_bylevel were increased
from 0.5 to 1. The performance metrics are shown in table 3.
T1-T3 are the different trials.

Table 3 Boosting hyperparameters and performance
metrics

Hyperparameter T1 T2 T3

colsample_bytree 0.5 0.8 1

colsample_bynode 0.5 0.8 1

colsample_bylevel 0.5 0.8 1

subsample 1 1 1

learning rate 0.3 0.3 0.3

max_depth 1 5 10

alpha 0 0 0

gamma 2 2 2

Min_child_weight 1 1 1

n_estimators 15 15 15

TP 24960 25074 20182

FP 2315 1729 1348

FN 1297 1183 841

TN 21660 22246 17815

SE 95.1 95.5 96

SP 90.3 92.8 93

AC 92.8 94.2 94.6

FPR 9.7 7.2 7

From table 3, trial 3 (T3) yields the best predictive

performance with an accuracy of 94.6 % and an FPR of 7 %.
Therefore, the parameters from trial 4 were used to create the
XGBoost model.

By tuning the tree-specific parameters like
colsample_bytree, colsample_bynode, colsample_bytlevel,
max_depth of the tree, we can change the sensitivity and
specificity and hence the false positive rate. Increasing the
value of these parameters tend to reduce the FPR and increase
the SE. It is observed that tuning these parameters to the
maximum limit gives the best results with SE = 96 %, SP =
93 %, AC = 94.6 % and FPR = 7% when only elderly
volunteers were considered from the Sisfall dataset.

3.2 Discussion
In [27] an accuracy of 98.72 % was obtained with the Sisfall
dataset which is more than the 96 % obtained by the XGBoost
algorithm. Since we have trained the model on the data from
the elderly volunteers only rather than the whole dataset
including young volunteers, a direct comparison cannot be
done. Liu [24] used data mostly from young volunteers to
train their model. The high accuracy of 99.14 % cannot be
compared to our work in respect to the above reasoning. Also,

in [22], an accuracy of 96.7 % was reported. 12 subjects
attended the experiments and the fall training data was
obtained from young adult volunteers only. Previous works
have demonstrated that the accuracy of the approaches where
mainly young volunteers are used is significantly reduced
when tested on institutionalized [47] and independent [17]
elderly people [38].

As it can be seen in table 4, the XGBoost algorithm
outperforms the work done by Mauldin et al. [20] and
Vallabh et al. [28] significantly. Also, the XGBoost
algorithm has a better accuracy of 96 % as compared to 91 %
[4] and 93 % [19] that used DT and NB respectively. The
false positive rate and sensitivity of the XGBoost algorithm
is better than that of [19].

Table 4 Comparison with past studies

 ML SE
%

AC
%

SP
%

FPR
%

Mauldin et al.
[20]

NB 66 64 62 38

SVM 26 56 86 14

Deep
Learning 86 70 54 46

Yacchirema et
al. [4] DT 100 91 94 6

Ngu et al.[19] NB 94 93 92 8

Wang et al.
[25] RF n/a n/a 82 18

Vallabh et al.
[28] K-NN 90.7 87.5 83.8 16.2

Proposed XGBoost 97 96 93 7

3.3 Real Time Tests
It is also noted that when testing the algorithm with real time
data, we obtained an SE of 100 % as shown in table 5. This
demonstrates that the XGBoost model does very well in
predicting falls. Two false negatives were obtained and the
model has a higher false positive rate of 28 %. Our XGBoost
model performs the best on detecting falls. However, the
XGBoost is not very accurate on ADLs. Still, the results are
still much better than that of [20].

Table 5 Real time tests with hyperparamters T4

TP 12

FP 2

FN 0

TN 5

SE 100

SP 71.4

AC 89.5

FPR 28.6

The fall detection sensitivity of 100 % with real-life falls

presented in the present study is higher than with
experimental falls (97 %), but the SP is lower by 23 %.

 We recognize that our fall detection model is tested using
data from a healthy and young volunteer, which might not
reflect the actual fall data from elderly people. Furthermore,

http://www.saimeche.org.za/

Fall Detection System using XGBoost and IoT

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

16

the real time falls database included less subjects and number
of ADLs considered was limited as compared to the Sisfall
dataset, which may explain the difference. However, the
results from the Sisfall dataset with the XGBoost algorithm
look promising in fall detection and should be investigated
further. An extension of this work would be to test the model
with a larger number of elder participants and ADLs.
Additionally we should investigate the change in the position
of the wearable device in the model. Also, in order to increase
the effectiveness of the fall detection systems a false alarm
button could be included to allow the user to cancel ADL
detected as falls (false positives) [29].

4 Conclusion
Falls among elderly people is a prominent issue that needs to
be addressed so as to increase the QoL of the elderly. This
project has presented a method to tackle this issue by
designing and implementing a fall detection system that
incorporates machine learning in its decision making and IoT
to store data and send alerts. The machine learning algorithm
used was XGBoost which is known for its accuracy and
speed. The machine learning model was trained using the
online Sisfall dataset. For fall prediction, the features to be
tested with the model are obtained from the accelerometer
embedded on the wearable device which is worn on the waist
by the user. The waist was found to be the optimal location
for the wearable device and moreover, in this position, the
elders can easily wear it. In case of a fall event, a buzzer is
sounded to alert nearby people and emergency contacts and
healthcare professionals are notified. The GPS location of the
fall victim is also provided.

The XGBoost algorithm outperforms the work done by
Mauldin [20] and Vallabh et al. [28] significantly when tested
using the Sisfall dataset. The XGBoost algorithm has a better
accuracy of 96 % as compared to 91 % [4] and 93 % [19] that
used DT and NB respectively. The fall detection sensitivity
of 100 % with real-life falls presented in the present study is
higher than with experimental falls (97 %), but the SP is
lower by 23 %. A false alarm button could be included in the
system to prevent false alarms. Further tests with other
XGBoost parameters need to be done to optimize the
performance of the model. The number of participants should
also be increased.

The details of the fall event is stored on the cloud to allow
easy access to the data. The system was tested with a series
of falls and ADLs and its accuracy and precision were
evaluated. The error rate was small showing that the proposed
system can detect falls with high accuracy and reduces the
probability of false alarms.

To improve the system, the machine learning model can
be designed and trained on a cloud platform such as Google
Cloud which supports the XGBoost algorithm. This will
allow more rapid data transfer and quicker response as all the
processing will be done in cloud. Moreover, new machine
learning algorithms such as neural networks, can be used to
design the fall detection algorithm and try to improve the
predictive performance.

References
[1] United Nations. World Population ageing. URL

www.un.org/en/development/desa/population/publicati
ons/pdf/ageing/WPA2017_Highlights.pdf, 2017.

[2] World Health Organization. Global Report on Falls
Prevention in Older Age. World Health
Organisation, 2007.

[3] U.S. National Library of Medicine. Aging changes in the
senses. URL medlineplus.gov/ency/article/004013.htm.

[4] D. Yacchirema, J. S. de Puga, C. Palau and M. Esteve.
Fall detection system for elderly people using IoT and
Big Data. Procedia Computer Science, 130:603-610,
2018.

[5] A. K. Bourke, P. W. J. van de Ven, A. E. Chaya, G. M.
O’Laighin and J. Nelson. Testing of a long-term fall
detection system incorporated into a custom vest for the
elderly. 30th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society.
pages 2844–2847, 2008.

[6] M. Belshaw, B. Taati, D. Giesbercht and A. Mihailidis.
Intelligent vision-based fall detection system:
Preliminary results from a real world deployment.
RESNA/ICTA 2011: Advancing Rehabilitation
Technologies for an Aging Society, Toronto, Canada, 5–
8 June, 2011.

[7] M. Belshaw, B. Taati, J. Snoek and A. Mihailidis.
Towards a single sensor passive solution for automated
fall detection. 2011 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society.
pages 1773–1776, 2011.

[8] A. Sixsmith and N. Johnson. A smart sensor to detect the
falls of the elderly. IEEE Pervasive Computing, 3(2):42–
47, 2004.

[9] T. Xu, Y. Zhou and J. Zhu. New advances and challenges
of fall detection systems: A survey. Applied Sciences,
8(3):418, 2018.

[10] R. Igual, C. Medrano and I. Plaza. Challenges, issues and
trends in fall detection systems. Biomedical Engineering
Online. 12(1):66, 2013.

[11] L. Martínez-Villaseñor, H. Ponce, J. Brieva, E. Moya-
Albor, J. Núñez-Martínez and C. Peñafort-Asturiano.
UP-fall detection dataset: A multimodal approach.
Sensors. 19(9):1988, 2019.

[12] G. Vavoulas, M. Pediaditis, E. G. Spanakis and M.
Tsiknakis. The MobiFall dataset: An initial evaluation of
fall detection algorithms using smartphones. 13th IEEE
International Conference on BioInformatics and
BioEngineering, pages 1-4, 2013.

[13] S. Abbate, M. Avvenuti, F. Bonatesta, G. Cola, P.
Corsini and A. Vecchio. A smartphone-based fall
detection system. Pervasive and Mobile Computing,
8(6):883-899, 2012.

[14] I. N. Figueiredo, C. Leal, L. Pinto, J. Bolito and A.
Lemos.. Exploring smartphone sensors for fall detection.
mUX: The Journal of Mobile User Experience, 5(1):2,
2016.

[15] N. K. Suryadevara, A. Gaddam, R. Rayudu and S. C.
Mukhopadhyay. Wireless sensors network based safe

http://www.saimeche.org.za/
http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Highlights.pdf
http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Highlights.pdf
https://medlineplus.gov/ency/article/004013.htm

Fall Detection System using XGBoost and IoT

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

17

home to care elderly people: Behaviour detection.
Sensors and Actuators A: Physical, 186:277-283, 2012.

[16] N. K. Suryadevara, M. T. Quazi and S. Mukhopadhyay.
Intelligent sensing systems for measuring wellness
indices of the daily activities for the elderly. Eighth
International Conference on Intelligent Environments,
pages 347-350, June 26, 2012.

[17] A. Sucerquia, J. López and J. F. Vargas-Bonilla. SisFall:
A fall and movement dataset. Sensors, 17(1):198, 2017.

[18] D. Lim, C. Park, N. H. Kim, S.-H. Kim and Y. S. Yu.
Fall-detection algorithm using 3-axis acceleration:
Combination with simple threshold and hidden Markov
model. Journal of Applied Mathematics, 2014.

[19] A. H. Ngu, P.-T. Tseng, M. Paliwal, C. Carpenter, W.
Stipe. Smartwatch-based IoT fall detection application.
Open Journal of Internet of Things, 4(1):87-98, 2018.

[20] T. R. Mauldin, M. E. Canby, V. Metsis, A. H. Ngu and
C. C. Rivera. SmartFall: A smartwatch-based fall
detection system using deep learning. Sensors,
18(10):3363, 2018.

[21] Y. S. Delahoz and M. A. Labrador. Survey on fall
detection and fall prevention using wearable and external
sensors. Sensors, 14(10):19806-19842, 2014.

[22] T. Zhang, J. Wang, L. Xu and P. Liu. Fall detection by
wearable sensor and one-class SVM algorithm.
Intelligent Computing in Signal Processing and Pattern
Recognition, 858-863, 2006.

[23] M. Luštrek and B. Kaluža. Fall detection and activity
recognition with machine learning. Informatica,
33(2):205-212, 2009.

[24] S. H. Liu and W. C. Cheng. Fall detection with the
support vector machine during scripted and continuous
unscripted activities. Sensors, 12(9):12301-12316, 2012.

[25] Y. Wang, K. Wu, K. and L. M. Ni. WiFall: Device-free
fall detection by wireless networks. IEEE Transactions
on Mobile Computing, 16(2):581-594, 2016.

[26] BigML.com - Machine Learning made easy. URL
https://bigml.com/, 2019.

[27] D. Yacchirema, J. S. de Puga, C. Palau and M. Esteve.
Fall detection system for elderly people using IoT and
ensemble machine learning algorithm. Personal and
Ubiquitous Computing, 23(5-6):801-817, 2019.

[28] P. Vallabh, R. Malekian, N. Yea and D. C. Bogatinoska.
Fall detection using machine learning algorithms. 24th
International Conference on Software,
Telecommunications and Computer Networks
(SoftCOM), pages 1-9, 2016.

[29] M. Kangas, R. Korpelainen, I. Vikman, L. Nyberg and
T. Jämsä. Sensitivity and False Alarm Rate of a Fall
Sensor in Long-Term Fall Detection in the Elderly.
Gerontology. 61(1):61-68, 2014.

[30] C. Wang, W. Lu, S. J. Redmond, M. C. Stevens, S. R.
Lord and N. H. Lovell. A low-power fall detector
balancing sensitivity and false alarm rate. IEEE Journal
of Biomedical and Health Informatics. 22(6):1929-1937,
2017.

[31] T. Chen and C. Guestrin. XGBoost: A scalable tree
boosting system. 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining.
pages 785–794, August 2016.

[32] M. S. Siva Priya, B. K. Sahu, B. Kumar and M. Yadav.
Network intrusion detection system using XG Boost.
International Journal of Engineering and Advanced
Technology, 9(1):4070-4073, 2019.

[33] T. He. XGBoosteXtreme Gradient Boosting. URL
https://www.saedsayad.com/docs/xgboost.pdf

[34] H. Musa, A. Y. Gital, F. U. Zambuk, A. Umar, A. Y.
Umar and J. U. Waziri. A comparative analysis of
phishing website detection using XGBOOST algorithm.
Journal of Theoretical and Applied Information
Technology. 97(5):1434-1443, 2019.

[35] H. S. Choi, S. Kim, J. E. Oh, J. E. Yoon, J. A. Park, C.
H. Yun and S. Yoon. XGBoost-based instantaneous
drowsiness detection framework using multitaper
spectral information of electroencephalography. ACM
International Conference on Bioinformatics,
Computational Biology, and Health Informatics, pages
111-121, August 2018.

[36] C. Krupitzer, T. Sztyler, J. Edinger, M. Breitbach, H.
Stuckenschmidt and C. Becker. Beyond position-
awareness—Extending a self-adaptive fall detection
system. Pervasive and Mobile Computing. 58:101026,
2019.

[37] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye and T.-Y. Liu. LightGBM: A highly efficient
gradient boosting decision tree. Advances in Neural
Information Processing Systems, 3146–3154, 2017.

[38] A. Sucerquia, J. D. López and J. F. Vargas-Bonilla. Real-
life/real-time elderly fall detection with a triaxial
accelerometer. Sensors, 18(4):1101, 2018.

[39] SisFall — SISTEMIC. URL
sistemic.udea.edu.co/en/research/projects/english-falls/,
2018.

[40] Machine learning algorithm cheat sheet - Azure Machine
Learning Studio. URL
docs.microsoft.com/enus/azure/machine-
learning/studio/algorithm-cheat-sheet, 2019.

[41] Complete Guide to Parameter Tuning in XGBoost with
codes in Python. URL
https://www.analyticsvidhya.com/blog/2016/03/comple
te-guide-parameter-tuning-xgboost-with-codes-python/

[42] Basic Evaluation Measures from the Confusion Matrix.
URL
https://classeval.wordpress.com/introduction/basic-
evaluation-measures/

[43] A. Özdemir. An analysis on sensor locations of the
human body for wearable fall detection devices:
Principles and practice. Sensors, 16(8):1161, 2016.

[44] I. Cleland, B. Kikhia, C. Nugent, A. Boytsov, J.
Hallberg, K. Synnes, S. McClean and D. Finlay. Optimal
placement of accelerometers for the detection of
everyday activities. Sensors, 13(7):9183-9200, 2013.

[45] J. D. López, C. Ocampo, A. Sucerquia and J. F. Vargas-
Bonilla. Analyzing Multiple Accelerometer
Configurations to Detect Falls and Motion. VII Latin
American Congress on Biomedical Engineering CLAIB,

http://www.saimeche.org.za/
https://bigml.com/
https://www.saedsayad.com/docs/xgboost.pdf
http://sistemic.udea.edu.co/en/research/projects/english-falls/
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://classeval.wordpress.com/introduction/basic-evaluation-measures/
https://classeval.wordpress.com/introduction/basic-evaluation-measures/

Fall Detection System using XGBoost and IoT

R & D Journal of the South African Institution of Mechanical Engineering 2020, 36, 8-18
http://dx.doi.org/10.17159/2309-8988/2020/v36a2

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.

18

Bucaramanga, Santander, Colombia, 26-28 October
2016, pp. 169-172, 2017.

[46] N. Pannurat, S. Thiemjarus and E. Nantajeewarawat.
Automatic fall monitoring: A review. Sensors,
14(7):12900-12936, 2014.

[47] F. Bagala, C. Becker, A. Cappello, L. Chiari, K.
Aminian, J. M. Hausdorff, W. Zijlstra and J. Klenk.
Evaluation of accelerometer-based fall detection
algorithms on real-world falls. PLoS ONE 7(5), 2012.

http://www.saimeche.org.za/

	1 Introduction
	2 Methodology
	2.1 Training Data from Sisfall
	2.2 Choice of Machine Learning Algorithm
	2.3 Model Training
	2.3.1 Performance Metrics

	2.4 Experimental Setup for Testing the Model in Real Time
	2.4.1 The Prototype
	2.4.2 Feature Extraction
	2.4.3 Fall Detection Algorithm
	2.4.4 Design of IoT Platform
	2.4.5 Feature Extraction using MPU6050 Sensor
	2.4.6 GPS Location and Fall Alert
	2.4.7 Prototype of Wearable Device
	2.4.8 Fall Detection Algorithm
	2.4.9 Real Time Data

	3 Results
	3.1 Training of Machine Learning Model
	3.2 Discussion
	3.3 Real Time Tests

	4 Conclusion

