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Abstract: Soft materials, such as soft biological tissue and 
soft silicone rubber, are non-linear materials which require 
the classical uniaxial and biaxial tensile testing methods for 
characterisation. Unfortunately, in special cases, such as 
for soft biological tissue, the samples are smaller than 
10 mm × 10 mm in size and these classical tensile testing 
methods produce unwanted stress and strain gradients due 
to the fastening techniques associated with these methods. 
Micro-indentation is proposed as an alternative method for 
characterising soft materials. Using inverse Finite Element 
(FE) analysis and a known Mooney-Rivlin three parameter 
material model, six different micro-indentation tests were 
proposed. A theoretical approach was used to determine 
which indentation test best characterised a silicone sample, 
by using two FE models. The results showed that micro-
indentation is capable of characterising a soft material in 
ideal conditions with a cylindrical indenter applied in a 
diagonal orientation over the sample, as the best 
indentation method. Finally, it was observed that the 
material model can either match the displacements with the 
smallest objective function or the stress vs. stretch curve can 
be matched to 99 % over the whole stretch range but not 
both simultaneously. 

Additional keywords:  Inverse Finite Elements 
analysis, Micro-indentation, Gradient optimisation, Mooney-
Rivlin hyper-elastic material model. 

1 Introduction 
Traditional uniaxial and biaxial tensile tests have shown to 
deliver sub-optimal results within small scale soft material 
samples such as biological tissue with sizes smaller than 
10 mm × 10 mm [1]. These methods make use of clamps or 
hooks to secure the material samples onto the testing rig, 
which leads to inaccurately derived stress and strain results 
due to the undesired stress concentrations obtained through 
these fastening techniques [1]. Micro-indentation is an 
alternative method for characterising soft materials to 
improve the non-linear response through inverse Finite 
Element (FE) methods [2]. The shape and size of the indenter 
depends on the modulus of the material as well as the sample 
size. Circular and spherical indenters are widely used during 
micro-indentation tests on soft materials [3], [4], and 

acceptable results have been obtained with these indenters [5] 
– [7]. 

Liu et. al. [8] proposed that softer materials with a 
decrease in modularity, such as biological tissue, will obtain 
better results using a nano-indenter and that stiffer materials 
with higher modularities, such as silicone rubber, obtain 
better results using an indenter size of approximately 2 mm 
in diameter. The natural curvature of circular and spherical 
indenters causes a more complex deformation mode, which 
is beneficial for local material characterisation within 
anisotropic materials such as biological tissue [9]. Within soft 
isotropic materials such as silicone rubber, the complex 
deformation can improve the non-linear response of the 
material [9]. This paper investigates possible inverse 
indentation tests to obtain a non-linear isotropic material 
model for soft materials, focusing on using simulation-based 
procedures and improving their accuracy. Different indenter 
shapes, their orientation and number of indenters were 
investigated as possible factors for improving the non-linear 
material response. 

 Soft materials are characterised as hyper-elastic and 
incompressible, causing the non-linear behaviour between 
load and deformation. Among the various hyper-elastic 
material models the Mooney-Rivlin, Ogden and Neo-
Hookean models are the most used material models for soft 
materials [10]. There is no clear distinction which material 
model performs the best; therefore, each hyper-elastic 
material needs to be tested for various material models to 
determine which describe the material response best. The 
Mooney-Rivlin model serves as the popular choice for new 
experimental procedures as it has proven to give reasonably 
accurate results with the least computation time [7], [10]. 

 FE analysis with its convenience of replicating large 
scale designs in a small-scale environment, also encounters 
some drawbacks. Non-linear hyper-elastic soft materials 
experience element distortion due to large deformations 
during analysis and can cause an increase in computation 
time, failed analysis and less accurate results. Two methods 
exist in rectifying this problem, either smaller elements can 
be used or remeshing can be applied.  Inverse FE analysis 
have become a popular method in characterising materials. 
The method relies on the accuracy of replicating the physical 
test within the FE model. Through optimisation the best 
material model parameters can be obtained by minimising the 
difference between the FE model and the physical test. 
Viljoen [11] used inverse FE analysis and the Mooney-Rivlin 
hyper-elastic material model to characterise a soft silicone 
rubber through uniaxial and biaxial tensile tests and the 
inverse bubble inflation test. Using the full field 
displacements of the physical samples and replicating the 
physical experiments within FE analysis, the material models 
were determined with success by optimising the parameters 
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of the material model, through minimising the difference in 
the deformation fields. 

This paper aims to develop an inverse FE approach for 
characterising soft materials on mm scale samples, using 
micro-indentation and simulation-based analysis. The results 
from an FE analysis, for each indentation test, with an 
assumed Mooney-Rivlin material model is used as a 
substitute for experimental results for the various indentation 
tests. A non-linear, isotropic silicone rubber was used as a test 
material in order to test the integrity of the method in an 
assumed ideal case and conditions. If analogous material 
models are obtained with each inverse indentation test, it can 
be concluded that the respective indentation test is capable of 
characterising soft materials. 

2 Methodology 
It is important to understand the inverse indentation tests, 
their capabilities and variability factors. The indentation 
methods used within this paper were completely simulation-
based with no physical tests and real time data. The 
simulation-based procedure gives a better understanding 
what factors cause a difference within the test results in an 
assumed ideal case. If the indentation methods are able to 
reproduce a hyper-elastic material model from an assumed 
ideal material, demonstrates that the indentation methods are 
capable of characterising a soft material. Once this has been 
proven, it can be further validated with physical tests.  

A simple indentation procedure was developed for each 
indentation test. The cylindrical indenters had a diameter of 
3 mm and a length of 30 mm and the spherical indenters were 
sized at 3 mm in diameter. Each indentation test was 
performed on a square material sample of size 
20 mm (l) × 20 mm (w) × 5 mm (d). Indenter placement was 
simulated by a linear position ramp function to apply a 
3 mm/s on the sample. The simulation variables included: the 
orientation and number of indenters for the cylindrical 
indenter tests, and the number of indenters for the spherical 
indenter tests. 

Viljoen[11] characterised a soft silicone rubber, Smooth-
Sil 950 [12], which is typically used for soft robotic 
applications. The Ogden three parameter model and both the 
Mooney-Rivlin two and three parameter models were used as 
the hyper-elastic material model for characterisation. The 
study concluded that the Mooney-Rivlin three parameter 
material model was the best option for characterising this soft 
silicone rubber, and it was therefore decided to use the 
Mooney-Rivlin three parameter model in the present study. 

The indentation tests presented are considered as uniaxial 
compression loading cases, which causes a multi-axial 
response due to the form and size of the indenters. In a 
uniaxial tensile case for an incompressible material, the 
Mooney-Rivlin three parameter model can be expressed 
through the engineering stress 𝜎𝜎𝑒𝑒  (𝜆𝜆) and stretch λ response 
of the material by eq. 1. The material model can be 
extrapolated to the compression region to investigate a 
different mode shape. The degree of compression can thus be 
expressed through stretch in eq. 2. 

𝜎𝜎𝑒𝑒(𝜆𝜆) = 2𝐶𝐶10 �𝜆𝜆 −
1
𝜆𝜆2
� + 2𝐶𝐶01 �1 − 1

𝜆𝜆3
� + 4𝐶𝐶20 �𝜆𝜆 −

1
𝜆𝜆2
� �𝜆𝜆2 + 2

𝜆𝜆
− 3�    (1) 

with 𝐶𝐶01,𝐶𝐶10 and 𝐶𝐶20 the material model parameters. 

𝜆𝜆𝑦𝑦 = ℎ
ℎ0

 (2) 

where ℎ0 is the initial height of the sample and ℎ is the 
height at that instant during any point of the compression 
analysis [13]. 

The multi-axial response can be described with a 
combination of both a uniaxial compression and tension case, 
through the stretch parameter. Stretch is the deformation 
(compression or tension) within the principal directions and 
is therefore directly associated with the principal strains 
through eq. 3. The minimum and maximum principal strains 
were captured within the FE analysis for each nodal point in 
the indentation test. Therefore, an approximate strain and 
stretch range for which the indentation test characterised the 
silicone sample could be calculated. The relationship 
between the minimum/maximum principal strain and 
indentation depth curve, were obtained from the node with 
the smallest minimum principal strain and the node with the 
highest maximum principal strain, respectively. 
𝜆𝜆𝑖𝑖 = 1 +  𝜖𝜖𝑖𝑖         𝑖𝑖 = 1,2,3 (3) 

where 𝜖𝜖𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ principal strain within a Cartesian 
coordinate system.    

Using eq. 2, the smallest stretch experienced by a circular 
indenter with an indentation depth of 3 mm, is 0.4 stretch. 
Viljoen [11] found that the approximate maximum stretch 
obtainable for the Smooth-Sil 950 silicone rubber, was 
2.5 stretch. The material model within this paper will be 
extrapolated in an ideal uniaxial test case for a stretch range 
of 0.4 to 3.0 stretch, using eq. 1. This is to determine how 
well the material models obtained by the FE analysis, predict 
the engineering stress vs. stretch response. 

Two non-linear FE models were created for each 
indentation test using MSC Marc Mentat (2019). The 
"Experimental" model for each indentation test, had the same 
Mooney-Rivlin material model shown in table 1. Viljoen [11] 
concluded that the coefficients presented in table 1 predicted 
the experimental results the best. By using the same material 
model for each "Experimental" model allows for a baseline 
between each indentation test to determine which indentation 
method produces the best results. 

Table 1 Mooney-Rivlin three parameter material model 
used for the "Experimental" model [11]. 

C10 [MPa] C01 [MPa] C20 [MPa] 

0.2605676 0.0975498 0.0575007 
 
 The second FE model, the "Numerical" model, for each 

indentation test consisted of an assumed Mooney-Rivlin 
material model. The aim of the optimisation procedure is to 
obtain a material model for the "Numerical" model so that the 
results fit the results obtained from the "Experimental" 
model. The quality of fit between the two models after 
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optimisation, determines if the specific indentation test is 
capable of characterising the silicone rubber. 

A numerical pipeline was developed for the optimisation 
procedure. Python was used within Visual Studio Code to 
develop and control the numerical pipeline. Vanderplaats 
Research & Development Inc. [14] Design Optimization 
Tools (DOT) was the optimisation library used within the 
inverse method. DOT is a gradient based optimisation 
toolbox developed for engineering applications. Both the 
Sequential Quadratic Programming (SQP) and Sequential 
Linear Programming (SLP) constraint optimisation 
algorithms were used. This library was obtained as a wrapper 
to use within Python as an efficient optimiser. The aim of the 
numerical pipeline was to link the pre- and post-processing 
data to and from the FE models in Mentat, with the DOT 
optimisation toolbox within Python. This was possible with 
the software specific Python API files provided by Marc, 
which allows easier access between the pre- and post-files 
written to and from Mentat. 

3 Non-linear Finite Element Analysis 
Large deformations with a non-linear hyper-elastic material 
cause frequent complications with distorted elements in a FE 
analysis. An easy solution is to reduce the mesh size and 
increase the number of elements as well as the number of 
nodes. Remeshing was applied within the FE analysis of this 
study to improve element distortion and to keep the 
computation time as low as possible. 

Second-order isoparametric tetrahedron (tet10) elements 
were used to define the mesh within the FE models. Solving 
tet10 elements with the remeshing feature causes one critical 
limitation, nodes cannot be tracked to obtain data for post 
processing calculations. This leads to a different method of 
applying boundary conditions, instead of specifying the 
boundary conditions through the nodes, they are applied 
through contact bodies. A solution was required to track 
relevant nodes for data capturing. This was achieved by using 
a glue contact constraint to glue four-noded, isoparametric, 
arbitrary quadrilateral membrane elements to the desired 
surface for data capturing. The remeshing feature are not 
applied to these elements, therefore the nodes can be used for 
data capturing. This layer of membrane elements is referred 
to as the "skin" elements throughout the study. 

It is expected that future work might implement the 
indentation methods investigated within this paper, with 
experimental work where the displacement data is captured 
through DIC. It was therefore decided to use a finer mesh for 
the "Experimental" model to represent the larger quantity of 
data points obtained from DIC. The approach and numerical 
pipeline developed in this study can be used in future work 
by replacing the "Experimental" model with DIC data. 

Initial convergence studies confirmed that for the 
"Experimental" models, a starting element edge length of 
1.5 mm and a minimum remeshing element edge length of 
0.9 mm for the tet10 elements are sufficient in obtaining 
acceptable results. The membrane elements were modelled 
with an element edge length of 0.25 mm with a thickness of 
0.001 mm. This "skin" layer of membrane elements was 

modelled so thin to ensure these elements do not add any 
stiffness to the sample and influence the results. The 
"Numerical" models were modelled with an element edge 
length of 2 mm for the tet10 elements and a minimum 
remeshing element edge length of 1 mm. The membrane 
elements were modelled with an element edge length of 
0.5 mm and a thickness of 0.001 mm. 

Figures 1a – 1f represent the final six "Experimental" FE 
models which were optimised during this study. The 
"Numerical" FE models are exactly the same but consist of 
coarser meshes. The front surface of the sample, represented 
by the "skin" elements, is the surface for data capturing. The 
surface is located within the XY – plane at 𝑍𝑍 = 0. 

The XY – plane serves as the parallel plane and the 
ZY – plane serves as the perpendicular plane, to the frontal 
surface used for data capturing. The different indentation 
tests are referred to the orientation of the indenter within the 
respective plane it is applied in, compared to the surface used 
for data capturing. 

In figures 1a – 1f the applied boundary conditions and 
constraints are visualised. A linear position ramp function of 
3 mm/s is applied in the negative Y – direction to the yellow 
geometric contact body indenters. A touching constraint is 
applied between the indenter and the red meshed sample to 
specify that the indenter is applying an indentation. The green 
bases are specified as fixed geometric bodies with a glue 
constraint between the base and the sample. This represents 
that the sample is fixed to a base to restrict movement of the 
sample as the indentation is applied. Future work can use 
means of surgical glue or rough sandpaper to fix the samples 
to the physical testing rig. Symmetry constraints were applied 
to each indentation test to reduce the computation time within 
each FE analysis. Symmetry surfaces were created and 
specified as symmetry contact bodies, which contains the 
necessary touching contact conditions. The red tet10 
elements represent the silicone rubber sample, specified as a 
deformable contact body which are allowed to be remeshed 
during the FE analysis. The cylindrical/box shaped wire 
frames around the indenters, specify the regions of the sample 
allowed to be remeshed. The blueish hue membrane elements 
glued to the side of the sample in the XY – plane, represent 
the surface of the sample used for data capturing. These 
elements are also modelled as deformable contact bodies but 
are specified not to be remeshed. 

4 Optimisation 
The inverse method utilises an optimisation algorithm in 
order to determine the material models for the "Numerical" 
FE model. The two gradient based optimisation algorithms 
used in this study (SQP and SLP) determines the optimum 
material model parameters, from random starting points, 
within a specified upper and lower bound serving as side 
constraints. The upper and lower bound for each Mooney-
Rivlin coefficient, given in table 2, were obtained by adding 
and deducting 20 % from the coefficients used for the 
"Experimental" model in table 1. The optimisation algorithm 
aims to minimise the objective function until a local 
minimum is reached. The global minimum can be obtained 
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by running more than one gradient optimisation from 
multiple starting points and ultimately obtain the material 
model for the silicone rubber from the multiple solutions. 

The inverse optimisation procedure, visualised in 
figure 2, starts with the multiple starting points obtained 
using a Latin Hypercube (LHC) design of experiments. A 
Python library named Design of Experiments for Python 
(pyDOE), was used to obtain optimally spaced design points 
within the upper and lower bounds from table 2. A set of ten 

design points were obtained for each indentation method to 
be optimised. The same set of ten design points were 
optimised using the SLP and SQP algorithms respectively, 
resulting in 20 different solutions for each indentation 
method. The procedure continues by taking the first starting 
point (the Mooney-Rivlin coefficients  𝐶𝐶01,𝐶𝐶10 and 𝐶𝐶20) and 
giving them to DOT as the variables to be optimised, along 
with the optimisation algorithm to be used. 

(b)   Two perpendicular cylindrical indenters, 
  

(a)  One perpendicular cylindrical indenter, Test A 

(c)    Parallel cylindrical indenter, Test C (d)    Diagonal cylindrical indenter, Test D 

(e)   One spherical indenter, Test E (f)   Two spherical indenters, Test F 

Figure 1 Meshed and symmetrical representation of final “Experimental” FE models 
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Table 2 Lower – and upper bounds for each of the material 
model parameters 

 C10 [MPa] C01 [MPa] C20 [MPa] 

Lower bound 0.2084541 0.0780398 0.0460006 
Upper bound 0.3126811 0.1170598 0.0690008 

 
A Marc procedure file is then created in Python, which 

changes the Mooney-Rivlin coefficients in the “Numerical” 
FE model to the first starting point. Using the procedure file, 
the “Numerical” model is calculated within Marc and the post 
processing files saved for further analysis. In order for the 
optimisation algorithm to work effectively, it is necessary to 
determine if the “Numerical” FE model obtained a successful 
analysis with the given material model, therefore one 
constraint was specified, i.e. the Marc exit number must equal 
3004. A true-false boolean was used to control the constraint 
within the optimisation procedure. The constraint was 
adhered to if the Marc exit number equalled 3004 and the 
algorithm was fed -1; the constraint was violated if any other 
value was returned by the Marc exit number and the 
algorithm was fed 1. Gradient based optimisation algorithms 
will normally pose a problem with such a boolean constraint, 
but DOT was specifically designed to serve as an efficient 
engineering optimiser; therefore, DOT backtracks within the 
one-dimensional search when a constraint is violated, until a 
new feasible point is obtained. This method allows DOT to 
deal with boolean constraints without encountering any 
problems.  

Displacement data is used to calculate the objective 
function by comparing the results for the "Numerical" model 
with the results from the "Experimental" model. The 
difference in mesh size between the two FE models and the 
use of remeshing, cause that the nodal locations and number 
of nodes differ between the results. It is therefore necessary 
that the nodal displacements obtained from the "Numerical" 

model be interpolated to the same nodal locations as the 
"Experimental" model's nodal displacements during the 
“RBF interpolation” step. Firstly, linear interpolation was 
used to interpolate the “Numerical” model’s results to the 
corresponding time increment obtained by the 
“Experimental” model using eq. 4 and eq. 5. At each time 
increment 𝑚𝑚 the indenter is at a depth ℎ𝑚𝑚 with a maximum 
indentation depth of ℎ𝑀𝑀 = 3 mm. Therefore, there exist a 
direct correlation between the indentation depth ℎ𝑚𝑚 and the 
time increment. 

𝐷𝐷𝑁𝑁𝑁𝑁𝑀𝑀𝑚𝑚 = �𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚+1−𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚−1
ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚+1−ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚−1

� �ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚 − ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚−1�+ 𝐷𝐷𝑁𝑁𝑁𝑁𝑀𝑀𝑚𝑚−1 (4) 

𝐶𝐶𝑁𝑁𝑁𝑁𝑀𝑀𝑚𝑚 = �𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚+1−𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚−1
ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚+1−ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚−1

� �ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚 − ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚−1�+ 𝐶𝐶𝑁𝑁𝑁𝑁𝑀𝑀𝑚𝑚−1 (5) 

where D is the X –, Y – and Z – displacement at increment 
m, C the X –, Y – and Z – coordinate at increment m and h the 
indenter level at increment m. 

Further interpolation involved using Radial Basis 
Functions (RBF) to interpolate the nodal displacements 
within the "Numerical" model to the same nodal locations as 
the "Experimental" model's nodal displacements. The Python 
library SciPy, was used to implement the RBF interpolation 
with the rbf function [15]. 

The Root Mean Square (RMS) error calculates the error 
between the "Numerical" model and the "Experimental" 
model by comparing the nodal displacements. The error is 
used as the objective function for the optimiser and gets 
minimised as the algorithm searches for the ideal material 
model. 

Non-linear FE analysis solve the simulated model 
iteratively in 𝑀𝑀 number of increments, represented as 
𝑚𝑚 = 1,𝑀𝑀. For each FE increment 𝑚𝑚, an RMS error is 
calculated for each displacement direction shown in eqs. 6 
– 8. 

Figure 2 Flow diagram of inverse optimisation procedure 



Investigating an Inverse Finite Element Approach for Characterising Soft Materials 
 
 

R & D Journal of the South African Institution of Mechanical Engineering 2021, 37, 80-88 
http://dx.doi.org/10.17159/2309-8988/2021/v37a9 

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved. 
 

85 

𝑒𝑒𝐸𝐸(𝑚𝑚)  =  
�∑ �𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋𝑗𝑗

(𝑚𝑚)−𝑑𝑑𝐸𝐸𝑋𝑋𝐸𝐸𝑋𝑋𝑗𝑗(𝑚𝑚)�
2

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
  (6) 

𝑒𝑒𝑌𝑌(𝑚𝑚)  =  
�∑ �𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝑗𝑗

(𝑚𝑚)−𝑑𝑑𝐸𝐸𝑋𝑋𝐸𝐸𝑌𝑌𝑗𝑗(𝑚𝑚)�
2

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
 (7) 

𝑒𝑒𝑍𝑍(𝑚𝑚)  =  
�∑ �𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁𝑍𝑍𝑗𝑗

(𝑚𝑚)−𝑑𝑑𝐸𝐸𝑋𝑋𝐸𝐸𝑍𝑍𝑗𝑗(𝑚𝑚)�
2

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
 (8) 

where the total number of nodes are represented as 𝑗𝑗 = 1,𝑛𝑛 
in the increment 𝑚𝑚. 

A total of 𝑀𝑀 RMS errors are calculated for each direction. 
A single RMS value can be obtained by summing all the RMS 
errors together, but it causes a bias in the objective function. 
The bias was minimised by normalising each direction's RMS 
error at each increment 𝑚𝑚, with the maximum absolute 
displacement value experienced by the "Experimental" model 
within the direction at increment 𝑚𝑚. Eq. 9 represents the 
single normalised and summed RMS value 𝑒𝑒, which 
describes the entire fit between the known Mooney-Rivlin 
material model from the "Experimental" model and the 
attempted material model from the "Numerical" model. 

𝑒𝑒 = 1
𝑀𝑀
∑ 𝑒𝑒𝑋𝑋(𝑚𝑚)

𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑑𝑑𝐸𝐸𝑋𝑋𝐸𝐸𝑋𝑋(𝑚𝑚)|)
𝑀𝑀
𝑚𝑚=1 + 𝑒𝑒𝑌𝑌(𝑚𝑚)

𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑑𝑑𝐸𝐸𝑋𝑋𝐸𝐸𝑌𝑌(𝑚𝑚)|)
+

𝑒𝑒𝑍𝑍(𝑚𝑚)
𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑑𝑑𝐸𝐸𝑋𝑋𝐸𝐸𝑍𝑍(𝑚𝑚)|)

   (9) 

The final optimisation problem is therefore stated as: 
 

minimise ∶    𝑒𝑒 
𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 ∶    𝑀𝑀𝑎𝑎𝑀𝑀𝑠𝑠 𝐸𝐸𝐸𝐸𝑖𝑖𝑡𝑡 𝑁𝑁𝑠𝑠𝑚𝑚𝑁𝑁𝑒𝑒𝑀𝑀 = 3004     (10)            

Further, DOT uses the calculated RMS error to evaluate 
if convergence was reached according to a series of built in 
criteria [14]. If convergence was not reached, the next point 
of parameters are calculated and the whole process starts 
again from the procedure file. If convergence was reached, 
the point containing the converged parameters are used to run 
the “Numerical” model and obtain the final results. The next 
starting point in the set of ten, obtained by the LHC model, is 
then used to be optimised with the whole procedure explained 
above. After the final starting point in the set of ten is 
optimised, the whole procedure is stopped to further evaluate 
which of the ten solutions obtained the best results.  

The 𝑅𝑅2  error will serve as a validation measure to 
determine if the material model obtained by each indentation 
test successfully characterised the silicone sample. An 𝑅𝑅2  ≥
 0.9500 error value needs to be obtained by the displacements 
to be classified as an acceptable fit. The principle strains need 
to obtain an 𝑅𝑅2  ≥  0.9000 to be classified as acceptable 
results. 

5 Results 
Each indentation test performed ten optimisations with both 
the SLP and SQP algorithms, in total adding to 20 
optimisation runs per test. All six indentation tests 
successfully characterised the “Experimental” model with 

99 % in all three displacement directions, using the SQP 
optimisation algorithm. Only five out of the six tests 
successfully characterised the “Experimental” model, using 
the SLP optimisation algorithm, with 99 % in all three 
displacement directions, with indentation test C as the test 
which failed the validation criteria by only matching the 
Y - direction with 93.5 % . Indentation test D proved to be the 
best test, using both the SQP and SLP algorithms the smallest 
objective function was obtained each time. The results for 
indentation test D will be analysed and discussed further in 
this section. 

Figure 3 visualises the objective function obtained by the 
20 optimisation runs using both the SLP and SQP algorithms 
for indentation test D respectively. An interesting observation 
is that the SLP algorithm obtained the same objective 
function for each optimisation run, which also resulted in the 
same material model parameters. This happened for each of 
the other indentation tests as well, resulting in the same 
results regardless of the indenter shape, orientation, number 
of indenters or starting point used. The SQP algorithm 
however delivered different results for each optimisation run, 
providing more meaningful information for conclusions. 
From figure 3, optimisation run 10 of the SQP algorithm 
obtained the smallest objective function, therefore reasonably 
being the optimisation run with the best results. Although, 
optimisation run eight proved this might not be the case.  

 
Figure 3 Objective functions for each of the 10 design 

points, obtained by both the SLP- and SQP 
algorithms, for indentation test D 

Figure 4 illustrates the engineering stress vs. stretch curve 
for the material models obtained by the SLP algorithm and 
optimisation run 10 and eight for the SQP algorithm. The SLP 
algorithm might have provided nearly perfect fits for each 
displacement direction with 99 % but was only able to fit the 
“Experimental” model’s engineering vs. stretch curve within 
one standard deviation for a range of 0.75 - 2.0 stretch. 
Optimisation run 10 from the SQP algorithm obtained the 
best objective function, but compared to the “Experimental” 
model’s engineering vs. stretch curve, a decrease in accuracy 
was observed within the tension region within one standard 
deviation and failed to fit the “Experimental” model above 
2.7 stretch. Optimisation run eight with a larger objective 
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function than optimisation run 10, was able to fit the 
“Experimental” model’s engineering vs, stretch curve with 
99 % over the whole stretch range, making it the best fitted 
results model.  This unexpected observation was further 
investigated with table 3. 

Table 3 Minimum- and maximum principal strain errors 
obtained by the best results from SLP and SQP 
algorithms, for indentation test D 

 Minimum principal 
strain 

Maximum principal 
strain 

Optimisation 
algorithm R2 RMS R2 RMS 

SLP 0.9698 0.0033 0.9983 0.0013 
SQP- Best 
objective 
function 

0.9654 0.0035 0.9877 0.0019 

SQP- Best 
fitted results 0.9628 0.0036 0.9981 0.0012 

 
The 𝑅𝑅2 fit and RMS errors from table 3 for the minimum 

and maximum principal strains provided the same interesting 
results observed within the engineering vs. stretch curve. It 
would have been expected that optimisation run 10 from the 
SQP algorithm, with the best objective function, would have 
obtained the smallest errors, but on the contrary obtained the 
largest errors for both the minimum and maximum principal 
strains. Whereas the SLP algorithm, with the largest objective 
function, obtained the smallest errors for both the minimum 
and maximum principal strains. 

Table 4 and table 5 summarise the 𝑅𝑅2 fit and Mooney-
Rivlin material model obtained by the SLP algorithm and 
optimisation run eight and 10 for the SQP algorithm 
respectively. Two observations can be made from this table, 
firstly; optimisation run eight proved to be the best fitted 

results model using figure 4, even though it did not obtain the 
best objective function, but did however obtain the best 𝑅𝑅2 fit 
results for each displacement direction. Secondly, from the 
three material models obtained by the different optimisation 
algorithms and optimisation runs, a large difference is 
observed within each material model parameter. The 
Mooney-Rivlin material model is a curve fitting function, 
therefore it is expected to obtain multiple sets of material 
parameters. 

Table 4 The 𝑅𝑅2 fit for each displacement direction obtained 
by the best results for each optimisation algorithm 

Optimisation 
algorithm 

X - 
displacement 
R2 

Y - 
displacement 
R2 

Z - 
displacement 
R2 

SLP 0.9991 0.9987 0.9999 
SQP- Best 
objective 
function 

0.9994 0.9987 0.9999 

SQP- Best 
fitted results 0.9996 0.9988 0.9999 

6 Discussion and Conclusion 
Six different micro-indentation tests were conducted in an 
inverse FE approach using two FE models to characterise a 
soft silicone rubber.  

The FE model's material response was described using the 
Mooney-Rivlin three parameter material model. The inverse 
FE analysis aimed to obtain a set material parameters for each 
indentation test's "Numerical" model, to fit the 
"Experimental" model's results. Both the SLP and SQP 
constraint gradient based optimisation algorithms were used 
within the optimisation procedure of the inverse method. The 
engineering stress vs. stretch curve for each material model 

Figure 4 Engineering stress vs. stretch curve for the best results obtained by the SLP and SQP algorithms, for 
indentation test D. 
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obtained by the optimisation algorithms, were predicted 
using the Mooney-Rivlin three parameter constitutive 
equation for a uniaxial compression case. The multi-axial 
response for each indentation test was represented by the 
minimum and maximum principal strains vs. indentation 
depth, respectively. The final test results concluded that using 
a cylindrical indenter, which applies a uniaxial load in a 
diagonal fashion across the test sample, indentation test D, 
will obtain the best Mooney-Rivlin material model using a 
SQP optimisation algorithm within an inverse FE approach. 

Table 5 The Mooney-Rivlin material model obtained by the 
best results for each optimisation algorithm 

Optimisation 
algorithm 

C10 [MPa] C01 [MPa] C20 [MPa] 

SLP 0.208454 0.078040 0.046001 
SQP- Best 
objective 
function 

0.252613 0.050992 0.050992 

SQP- Best 
fitted results 0.280362 0.092507 0.054244 

 
The results proved that the Mooney-Rivlin material 

model is a curve fitting function and that more than one 
material model can be obtained, which describes the material 
response accurately. Therefore, the different material models 
obtained from the two optimisation algorithms, were 
expected. 

One main goal of the study was to find an improved 
method for characterising soft materials with an improved 
accuracy response for the engineering stress vs. stretch curve 
in both the compression and tension region. Each indentation 
test was able to obtain a material model which fitted the 
engineering stress vs. stretch curve over the whole stretch 
range of 0.4 – 3.0 stretch. Unfortunately, these material 
models did not obtain the smallest objective function, but this 
interesting observation can lead to new research. The 
minimum and maximum principal strains obtained for the 
indentation depth were investigated since the stretch is 
directly correlated to the principal strains. It was again 
concluded that the material model with the smallest objective 
function will not guarantee the best strain results. It was 
originally assumed that using the displacements within the 
objective function, will account not only for the 
displacement, but the strain as well to be optimised as the two 
parameters are directly correlated. The results disproved this 
assumption within table 3 and figure 4. 

The study did not aim to find the best optimisation 
algorithm, but it was clear that the SQP algorithm performed 
the best. If the SLP algorithm produced a material model with 
the smallest objective function, this algorithm would have 
been perfect since, between the 60 different optimisation runs 
across vastly different indentation tests, the same material 
model was obtained each time. This would have resulted in 
the prefect test procedure since a guaranteed optimum 
material model would have been obtained and the silicone 
rubber perfectly characterised. Unfortunately, the SLP 
algorithm only ran into the lower bound from table 2 and did 
not provide much useful information, other than that this 

algorithm is not best suited for this type of optimisation 
problem. 

From the observations within the results, a material model 
either matched the displacement field nearly perfect with the 
best objective function, or the engineering stress vs. stretch 
curve nearly perfect, but both cannot be matched perfectly 
simultaneously. This was mostly due to the objective function 
which only accounted for the displacements.  

In conclusion, the current work does however indicate 
that the approach works much better and is able to nail down 
the original material model, but the method is currently 
limited and would need future investigations to improve the 
limitations. 

Future work could possibly keep the following in mind; 
these indentation tests are intended to characterise various 
soft materials on mm scale. The size of the samples is not 
limited to the size used within this paper but can possibly be 
applied to smaller scale samples, provided that the ratios 
between the test dimensions are kept the same. A silicone 
rubber was used as the non-linear hyper-elastic material, but 
the methods are not limited to silicone rubber and can 
possibly be investigated further to account for anisotropic 
materials such as biological tissue. Using only the 
displacement data is not enough to extract the original 
material model due to many local minima in the objective 
function, therefore future work can investigate the use of 
additional metrics in the inverse process e.g., the 
displacement and the force/strain data. 
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