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Abstract: The inherent variability of renewable energy 
sources, pump storage plants and combined cycle gas 
turbines implies that coal-fired plants designed for 
continuous base load generation in South Africa must now 
be used for variable load. This has a negative effect on the 
overall efficiency and life expectancy of these plants. The 
challenge is, therefore, to balance the network demands 
with the power station operation, its thermal efficiency, 
availability and extended plant life expectancy. The focus of 
the current research is to monitor and optimise the 
efficiency of the boiler operation and control through 
modelling of the boiler subsystems during transient states. 
Flownex® Simulation Environment was used to model a 
generic boiler and a boiler control system in order to 
simulate thermo-fluid processes and critical boiler 
controllers. The developed model was evaluated based on 
plant data and optimised afterwards by means of PID 
controllers and Machine Learning algorithms. The process 
parameters obtained from the Machine Learning 
algorithms outperform that of the PID controllers for the 
selected controllers, such as: boiler load control and steam 
pressure control. 

Additional keywords:  Power generation, boiler 
control, boiler modelling. 

1 Introduction 
Steam generation is a critical parameter in coal-fired power 
plants. Thus, the control of critical parameters associated 
with a boiler system is imperative due to constant load 
changes, which is a common occurrence in the current 
electrical industry [1]. Frequently changing load disturbances 
occur as an increase in the number of renewable energy 
sources are being passed to the national grid. Therefore, coal-
fired power stations are not able to operate at a steady load 
and adjustments are constantly made to meet with the 
requirements of load conditions. 

High-level control systems are used to achieve accurate 
control of boiler operations with the main purpose of 
maintaining a target set point value during boiler operation. 
Without the use of high-level control and interrelating 
systems in boiler control, the boiler system will not be able to 
perform steam generation as required. With the use of high-
level control systems, a large array of fine-tuning and 
optimisation methods are required in order to improve the 

efficiency and responsiveness of boiler control, these 
optimisation methods are reported in [1-11]. 

Within the sub systems of a coal-fired power station, the 
task of a boiler is to produce the correct mass flow rate and 
temperature of steam which is passed to the steam turbines 
for the generation of electricity.  

For a drum-type boiler, steam generation starts with the 
combustion of pulverised coal and air in the furnace of the 
boiler arrangement. The energy created from combustion is 
used to heat water in tubes within the furnace to generate 
saturated steam, the saturated steam then passes to a boiler 
drum in order to separate steam from water, figure 1. Dry 
steam is then superheated to the required temperature and 
passed to the turbine, which converts the steam energy into 
the mechanical energy to generate electricity. 
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Figure 1 Schematic of a steam power plant (boiler-

following mode) 

The boiler can be controlled using various control modes 
depending on the national power demand as well as the 
capabilities of the power station. The control modes include 
boiler-following, turbine-following and coordinated-control 
modes. The various control regimes have differing responses 
to changes in megawatt (MW) load. 

In the boiler-following mode, the MW load demand 
signal is referred directly to the control of the turbine 
governing valve, which is modulated to meet the MW load 
demand, figure 1. This action allows for fast responses to 
changes in MW load as the stored steam energy in the boiler 
is utilised. As the steam flow changes due to movements of 
the governor valve, the boiler controller maintains a constant 
steam pressure by controlling the combustion process and the 
steam-water circuit accordingly. This control mode can 
rapidly respond to changes in load demand; however, the 
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control mode can only respond to small load changes as there 
is a limited allowable range of the pressure drop across the 
turbine governing valve [12].  

Boiler-following control mode results in less stable 
pressure control as there is a lag between the turbine and 
boiler responses. This in turn creates undershoots or 
overshoots in the steam pressure set point. This mode is used 
in special cases and during manual control.  

The preferred mode of operation is coordinated-control 
mode where the boiler and the turbine are controlled 
synchronously. However, this approach significantly 
complicates the control system. 

Boiler-following mode as well as the boiler response will 
therefore be the focus of this study. 

In order to produce an efficient and organised control 
structure within a plant, a control hierarchy is developed. The 
control hierarchy clearly distributes the controllers across 
several levels of control; the higher the level of control, the 
fewer manual interventions are required. In order to achieve 
such functionality, each hierarchical level is dedicated to a 
specific control measure and always depends on the lower 
collateral control level. If a lower control level in the 
hierarchy fails, the superior control level will not be affected 
and will allow the remaining hierarchy to control the power 
plant with full safety. 

There are two forms of hierarchical control, namely 
binary and analogue. The objective of the binary control 
system is to provide set point values to subordinate control 
levels, which will ultimately reach the actuators to ensure the 
requirements are fulfilled [13]. The task of the analogue 
control system is to control the process variable of the defined 
set point, as well as control of drivers and actuators.  

The efficiency of the boiler, which depends on the 
performance of the controllers and the executing systems, is 
determined by the critical process parameters, such as: MW 
load, steam pressure, steam temperature, furnace pressure, 
boiler drum level, residual oxygen (O2) in the furnace, coal 
flow, air flow etc. These process parameters are constantly 
monitored in order to assess the health of and efficiency of 
the boiler and auxiliary systems. In this research, the focus is 
on two critical parameters and the corresponding controllers: 
the boiler load and the steam parameters. 

2 Thermo-fluid Model 
The developed thermo-fluid model using Flownex® consists 
of the boiler drum and turbine model. Together, both models 
are used to model the performance of various controllers 
related to the steam-water circuit which include the drum 
level, steam temperature, steam pressure and boiler load 
controllers.  

2.1 Steam-water circuit model 
The Flownex® steam-water circuit model is shown in 
figure 2. The feed-water, preheated to 210 °C in the 
economiser, enters the lower part of the drum where it mixes 
with the hot water. Due to natural circulation, the feed-water 
rises in the tubes of the evaporator while absorbing heat from 
the combustion of pulverised coal in the furnace. The water-

steam mixture enters the drum where steam and water are 
separated. Steam is further heated in the two-stage 
superheater, where the steam temperature is controlled within 
the required range by means of water spraying in the 
attemperator before it is directed to the governor valve of the 
turbine. 

 
Figure 2 Flownex® steam-water circuit model  

As the load changes, the steam flow is adjusted and as a 
result the water level in the boiler drum changes. The feed-
water flow is then altered in order to maintain a steady water 
level. The boiler drum operating parameters used in 
modelling are shown in table 1. 

Table 1 Boiler drum operating parameters 

Parameter  Value 
Drum Pressure 8500 kPa 
Drum Volume 80 m3 

Drum Diameter 2 m 
Steam Mass Flow 206 kg/s 
Evaporator Steam Temperature 299 ºC 
Feed-water Mass Flow 200 kg/s 
Feed-water Temperature 210 ºC 
Down Comer Volume 11 m3 

Riser Volume 37 m3 

Drum Water Level 0,48 m 
Steam Quality 0,21 

 

2.2 Turbine model 
Figure 3 shows a turbine model, which consists of high 
pressure (HP) and  low pressure (LP) turbines, connected on 
one shaft  in the Flownex environment in order to study the 
direct effect each controller has on the overall plant 
efficiency. The shaft is specified to maintain a constant speed 
of 3000 rpm which allows for varying load due to changes in 
steam mass flow. The design of the turbine network requires 
the turbine ellipse flow coefficient as well as the turbine 
isentropic efficiency.The main design parameters of the 
turbine model are specified based on actual plant data and 
shown in tables 2 and 3. 

http://www.saimeche.org.za/
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The relationship between pressure deviation and steam 
mass flow within a turbine is expressed by means of the 
Ellipse law. The Ellipse law employs the definition of the 
flow coefficient denotes as 𝛷𝛷, in cases of non-controlled 
expansion in multistage turbines. The equation is expressed 
as follows: 
𝛷𝛷 =  𝑚𝑚

�𝑝𝑝𝑣𝑣

   (1) 

where 
m  = steam mass flow rate (kg/sec) 
p  = steam pressure (kPa) 
v  = specific volume (m3/kg) 

 
Figure 3 Flownex® turbine model 

The inlet and outlet pressures of an adiabatic turbine are 
fixed as it undergoes a steady-flow process. Hence, the 
idealized process for a steam turbine is an isentropic process 
occurring between the exit and inlet steam pressure. The most 
significant output of the steam turbine is the work output. The 
definition of the isentropic efficiency of the steam turbine is 
calculated as the ratio of work output of the turbine during 
isentropic process and the actual work output.  

The isentropic efficiency of turbine can then be written as 

𝜂𝜂𝜂𝜂 ≅ (ℎ2𝑎𝑎−ℎ1)
(ℎ2𝑠𝑠−ℎ1)

  (2) 

where 
h1 = enthalpy at the inlet 
h2a = enthalpy of actual process at the exit 
h2s = enthalpy of isentropic process at the exit 
 
The complete thermo-fluid model includes the steam 

drum and turbine network. The model has been developed to 
simulate the Camden Power Station. The relevant parameters 
including steam pressure, temperature, enthalpy and entropy 
are compared between the model and the actual plant. 

Table 2 HP steam turbine design parameters 

Parameter  Value 
Design Mass Flow 240 kg/s 
Inlet Pressure 10000 kPa 
Inlet Temperature 510 ºC 
Specific Volume 0,085 m3/kg 
Pressure Ratio 15 
Ellipse Flow Coefficient 0,95 
Isentropic Efficiency 0,989 
Shaft Speed 3000 rpm 

The complete thermo-fluid model was used to simulate 
the operation at 200 MW load and the results were compared 

with the real plant data, figures 4-5. The simulation results 
show similar trends to the real power plant and, therefore, the 
thermo-fluid model can be used for the study of control 
strategies. 

Table 3 LP steam turbine design parameters 

Parameter  Value 
Design Mass Flow 240 kg/s 
Inlet Pressure 500 kPa 
Inlet Temperature 510 ºC 
Specific Volume 0.66 m3/kg 
Pressure Ratio 5 
Ellipse Flow Coefficient 2,75 
Isentropic Efficiency 0,93 
Shaft Speed 3000 rpm 

 

 
Figure 4 Comparison of entropy of actual plant and model 

 
Figure 5 Comparison of enthalpy of actual plant and model 
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3 Control Models 
The developed control models, based on the real plant 
controllers of a 200 MW power generation unit, were 
implemented and developed in Flownex® and interfaced 
with the thermo-fluid boiler-turbine model described above.  

3.1 MW Load Controller Model 
The determinant that controls all the boiler operations is 
called the ‘master demand’. In a thermal power plant, steam 
is generated by burning fuel and the master demand sets the 
firing rate at a rate that is proportional with that of the steam 
production.  

As described, an advanced type of control of the boiler-
turbine system is the coordinated control mode. In order to 
achieve a balanced control structure, the Unit Coordinator 
generates the MW demand of the boiler-turbine system using 
various computations, which is then distributed to both the 
Boiler Load and Turbine controllers as input load demands 
[12]. The developed MW load controller model combines the 
elements of Unit Coordinator and Load Controllers of a 
boiler, figure 6. The MW set point is correlated with the 
values obtained by the capability computation and the 
efficiency units. The capability parameters depend on actual 
plant conditions and aggregates in service, such as: coal 
grinding mills, draught fans, feed-water pump and fabric 
filter plant.  

 
Figure 6 MW Load controller model 

Frequency correction is responsible for keeping 
frequency within a 0.05 Hz dead band. If the frequency either 
decreases or increases outside of the dead band, the steam 
governing valve will automatically respond. 

The efficiency unit is an operator changeable set point, 
which has limits of 0,9-1,1. The operator selected value is 
then divided by an efficiency constant of 2,85, thus producing 
an efficiency value [14]. Additionally, the unit efficiency 
constant is calculated by comparing the fuel demand with that 
of the generated MW. Once compared, the efficiency 
constant is then passed through MIN and MAX selectors to 
ensure that the efficiency constant is limited between the 
values 2,5 and 3,5. The unit efficiency is then multiplied by 
the unit load set point to determine the boiler fuel flow 
limitation in MJ/sec. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝑐𝑐𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝐸𝐸𝑐𝑐 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵 𝑑𝑑𝐵𝐵𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑
𝐺𝐺𝐵𝐵𝑑𝑑𝐵𝐵𝐵𝐵𝑑𝑑𝐺𝐺𝐵𝐵𝐵𝐵 𝑀𝑀𝑊𝑊

 (3) 

Using the calculated efficiency constant, the unit 
efficiency is calculated by comparing the operator 

changeable efficiency parameter towards that of the 
efficiency constant. 

𝑈𝑈𝐸𝐸𝐸𝐸𝑐𝑐 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵𝑑𝑑𝐺𝐺𝐵𝐵𝐵𝐵 𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝐵𝐵𝐵𝐵 𝑂𝑂𝑑𝑑𝐵𝐵𝑑𝑑𝑚𝑚𝐵𝐵𝐺𝐺𝐵𝐵𝐵𝐵
𝐸𝐸𝑓𝑓𝑓𝑓𝐵𝐵𝑐𝑐𝐵𝐵𝐵𝐵𝑑𝑑𝑐𝑐𝐸𝐸 𝑐𝑐𝐵𝐵𝑑𝑑𝑐𝑐𝐺𝐺𝑑𝑑𝑑𝑑𝐺𝐺

 (4) 

3.2 Steam Pressure Controller Model 
The boiler steam pressure controller makes use of an energy 
balance between the drum pressure and the throttle pressure 
to develop a heat release computation, figure 7. The energy 
balance forms a non-regenerative calculation which is self-
calibrating. This allows for lower fluctuations in boiler over 
firing or under firing. The output signal of the steam pressure 
controller is passed to the load controller which specifies a 
MJ boiler fuel requirement. Similar to the integration of 
throttle pressure error, the rate of change of boiler drum 
pressure is an indication of the boiler-turbine energy balance 
and can form a key role in the measurement and control of 
the boiler firing rate. System instability and cycling can be 
greatly reduced as well as the dependence of integral control 
by implementing the calculated heat release associated with 
the rate of change of drum pressure. 

http://www.saimeche.org.za/
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The control system makes use of calculated heat release 
as fuel feedback and does not depend on coal feeder speed. 
The computation of heat release provides an instantaneous 
measure of the energy input to the boiler during fluctuations 

in load changes. Thus, the calculation of heat release is able 
to provide a total fuel computation. 
 

 
Figure 7 Steam Pressure controller model 

The controller is able to achieve stable control of the 
throttle steam pressure (steam pressure prior to turbine 
governing valve) during successive changes in the set point 
value with the use of direct energy balance. Stable regulation 
of the process variable is achieved since both proportional 
and derivative control is used in the architecture. 

The direct energy balance computation, which is 
calculated from a three-point control, serves as a self-
calibrating feedback signal based on energy demand which is 
able to alter the required boiler demand for 
increased/decreased stored energy required during load 
changes. The heat release computational model proves true 
for a number of changes in boiler firing rate and steam mass 
flow fluctuations during real time operation [15].  

The cascade controller is able to provide a linear 
approximation of the governing valve operation with that of 
the load demand with the use of dynamic compensation and 
derivative action. Additionally, the controller allows for the 
implementation of frequency control for load changes. 

The firing rate demand is a computation of the measure of 
the heat release from the boiler which is formed as a self-
calibrating turbine energy balance equation. The 
measurement of boiler demand is formed by determining the 
ratio of first stage turbine pressure to that of the measured 
throttle pressure, then comparing the calculated ratio to that 
of the throttle pressure set point. The fuel error is determined 
by comparing the difference in boiler demand based on 
turbine energy balance and that of the boiler heat release [15]. 
As mentioned, the heat release is calculated as the sum of the 
rate of change of drum pressure and first stage turbine 
pressure; temperature compensation is included in the 
computation of both terms respectfully. 

The use of a heat release equation to maintain boiler 
energy with turbine demand is far more complex than single 
element steam pressure control. In this case, the boiler and 

turbine are not in a steam flow balance but rather an energy 
balance. The energy balance is nonlinear to steam flow and 
therefore must remain in balance for optimal plant operation. 

3.3 Machine Learning Controller 
The key advantage to using a neural network for control is 
the ability of the algorithm to achieve a desired value by 
means of processing the actual plant data. This deviates 
substantially from the use of numerical and statistical 
methods of control. In a control model, the output of the 
neural network is propagated through the plant and receives 
the plant’s error as an input signal.  

The Machine learning controller developed using 
Matlab® using custom script files to control the thermo-fluid 
model through means of Flownex® API’s acts similarly to 
that of the PID controller. Where the artificial neural network 
accepts as inputs, the set point of the critical control 
parameter together with the error deviation (difference 
between set point and process value). The size of the neural 
network greatly depends on the complexity of the control 
object performed. Hence, as little hidden neurons are used as 
possible. This assists in reaching an optimal solution faster 
yet maintaining the complexity of the neural network. 

The output of the neural network based on a given set of 
input data is calculated by means of a single feedforward pass 
through the network. The value produced by the output 
neuron serves as a control output which is passed to the 
actuators, figure 8.  

While a vast number of learning rules are available for 
training neural networks, the Gradient Descent learning rule 
is of the most widely used for training neural networks 
effectively. Because the neural network is used in a dynamic 
environment such as the PID controller, the neural network 
makes use of a stochastic learning rule, where weights are 
adjusted after each iteration. The next input pattern is selected 

http://www.saimeche.org.za/
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from the thermo-fluid model after the output of the neural 
network has manipulated the process value. Hence, no prior 
training is implemented. 

Provided an input pattern z is given, the error bounded 
between the expected output and the actual output is given by 
the following equation: 

𝑆𝑆𝑆𝑆𝐸𝐸 =  𝜀𝜀 =  1
2
∑ (𝑐𝑐𝑘𝑘 −  𝑐𝑐𝑘𝑘)2𝐾𝐾
𝑘𝑘=1  (5)  

Illustrated in equation 5, the sum of the squared errors is 
used such that 𝑐𝑐𝑘𝑘 and 𝑐𝑐𝑘𝑘 are the set point and process value 
of the control system respectively. 

In order to optimise the neural network, a back-
propagation algorithm is used to adjust the weights after each 
feed forward pass. 

 
Figure 8 Machine Learning Controller 

By using an artificial neural network that consists of a set 
of I input neurons {𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝐼𝐼}, a set of J hidden layer 
neurons �𝐸𝐸1,𝐸𝐸2 , … ,𝐸𝐸𝐽𝐽�, each with a set of weights 
�𝑣𝑣𝐸𝐸,1, 𝑣𝑣𝐸𝐸,2, … , 𝑣𝑣𝐸𝐸,𝐵𝐵 , … , 𝑣𝑣𝐸𝐸,𝐽𝐽� and a set of K output layer 
neurons {𝑐𝑐1, 𝑐𝑐2, … ,𝑐𝑐𝐾𝐾}, each with a set of weights 
�𝑤𝑤𝑘𝑘,1,𝑤𝑤𝑘𝑘,2, … ,𝑤𝑤𝑘𝑘,𝐵𝐵 , … ,𝑤𝑤𝑘𝑘,𝐽𝐽�, each output neuron, 𝑂𝑂𝑘𝑘 , can be 
calculated as follows in equations 6 – 9: 

𝑂𝑂𝑘𝑘,𝑂𝑂  =  𝐸𝐸𝐵𝐵𝑘𝑘 �∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝐸𝐸𝐸𝐸𝑘𝑘
𝐽𝐽+1
𝑘𝑘=1 �∑ 𝑣𝑣𝑘𝑘𝐵𝐵𝑧𝑧𝐵𝐵,𝑂𝑂𝐼𝐼+1

𝐵𝐵=1 �� (6) 

Where 𝐸𝐸𝐵𝐵𝑘𝑘 and 𝐸𝐸𝐸𝐸𝑘𝑘 are the activation functions used for 
the output layer 𝑂𝑂𝑘𝑘 and the hidden layer 𝐸𝐸𝑘𝑘 respectively. 𝑊𝑊𝑘𝑘𝑘𝑘 
is the weight between output unit 𝑂𝑂𝑘𝑘 and hidden unit yj; 𝑧𝑧𝐵𝐵,𝑂𝑂  
is the value of input unit zi of input pattern zp. 

Such that p is the number of input neurons. An activation 
function  𝐸𝐸𝐵𝐵𝑘𝑘 and 𝐸𝐸𝐸𝐸𝑘𝑘 are nodes which are added to the output 
layer or hidden layer of any neural network [16].  

The Gradient Descent algorithm works by iteratively 
adapting each weight using the following formula: 

𝑤𝑤𝑘𝑘,𝑘𝑘(𝑐𝑐) =  𝑤𝑤𝑘𝑘,𝑘𝑘(𝑐𝑐 − 1) −  𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑘𝑘,𝑗𝑗

 (7) 

The above formula holds true for updating hidden layer 
weights. It is thus necessary to differentiate the error with 
respect to the hidden and output layer weights. 

It can be noted that the activation functions used for both 
output layer and hidden layer differ depending on the 

required output signal. Additionally, 𝑤𝑤𝑘𝑘𝑘𝑘  and 𝑣𝑣𝑘𝑘𝐵𝐵  represent the 
weights between both input layer and hidden layer as well as 
weights between hidden layer and output layer respectively. 
Through the training phase of a feedforward neural network, 
the weights 𝑤𝑤𝑘𝑘𝑘𝑘  and 𝑣𝑣𝑘𝑘𝐵𝐵  are updated using the following 
equations [16]: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑘𝑘,𝑗𝑗

=  𝜕𝜕𝜕𝜕
𝜕𝜕𝐵𝐵𝑘𝑘

𝜕𝜕𝐵𝐵𝑘𝑘
𝜕𝜕𝑑𝑑𝐵𝐵𝐺𝐺𝑜𝑜𝑘𝑘

𝜕𝜕𝑑𝑑𝐵𝐵𝐺𝐺𝑜𝑜𝑘𝑘
𝜕𝜕𝑤𝑤𝑘𝑘,𝑗𝑗

  (8) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑘𝑘,𝑗𝑗

 =  −(𝑐𝑐𝑘𝑘 −  𝑐𝑐𝑘𝑘)𝑐𝑐𝑘𝑘(1 −  𝑐𝑐𝑘𝑘)𝐸𝐸𝑘𝑘 (9) 

Similarly, the set of hidden neuron weights, 
�𝑣𝑣𝐸𝐸,1, 𝑣𝑣𝐸𝐸,2, … , 𝑣𝑣𝐸𝐸,𝐵𝐵 , … , 𝑣𝑣𝐸𝐸,𝐽𝐽� are calculated as follows: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣𝑦𝑦,𝑖𝑖

=  ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝐵𝐵𝑘𝑘

𝜕𝜕𝐵𝐵𝑘𝑘
𝜕𝜕𝑑𝑑𝐵𝐵𝐺𝐺𝑜𝑜𝑘𝑘

𝐾𝐾
𝑘𝑘=1

𝜕𝜕𝑑𝑑𝐵𝐵𝐺𝐺𝑜𝑜𝑘𝑘
𝜕𝜕𝑓𝑓𝑦𝑦𝑗𝑗

𝜕𝜕𝑓𝑓𝑦𝑦𝑗𝑗
𝜕𝜕𝑑𝑑𝐵𝐵𝐺𝐺𝑦𝑦𝑗𝑗

𝜕𝜕𝑑𝑑𝐵𝐵𝐺𝐺𝑦𝑦𝑗𝑗
𝜕𝜕𝑣𝑣𝑗𝑗,𝑖𝑖

 (10)  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣𝑦𝑦,𝑖𝑖

=  ∑ −(𝑐𝑐𝑘𝑘 −  𝑐𝑐𝑘𝑘)𝑐𝑐𝑘𝑘(1−  𝑐𝑐𝑘𝑘)𝑤𝑤𝑘𝑘,𝑘𝑘𝐸𝐸𝑘𝑘�1 − 𝐸𝐸𝑘𝑘�𝑧𝑧𝐵𝐵𝐾𝐾
𝑘𝑘=1  (11) 

The weights are updated in accordance to the error 
between the measured output value and the desired output 
value [16]. Hence, the back propagation algorithm is used to 
improve the neural network’s accuracy using the training data 
set (plant data). 

The activation function assists in mapping the resulting 
value of a node to a desired range depending on the type of 
activation function used [16].  

The Hyperbolic Tangent function is defined using 
equation 15:    

𝐸𝐸(𝑥𝑥) =  𝐵𝐵
2𝑥𝑥−1
𝐵𝐵2𝑥𝑥+1

   (12)  

Unlike the Sigmoid activation function, the output of the 
hyperbolic tangent function is zero centred. The hyperbolic 
tangent function maps negative values as strongly negative 
while positive values are mapped as strongly positive, this 
avoids neurons from becoming saturated and in turn enforces 
effective training [16]. 

4 Condition Monitoring 
In the process monitoring of the thermo-fluid model, it has 
been noticed that even during a stable load condition, the 
boiler control system variables and the associated executing 
mechanical sub-systems fluctuate while the set points remain 
constant. 

The developed condition monitoring algorithm includes 
the following three parameters: the duty cycle, the total 
percentage movement of the process variable and mechanical 
actuators associated with it and the accuracy of the process 
variable [17]. 

The plant condition monitoring algorithms give a better 
understanding of how various control systems operate in 
different transient states. The primary focus on control 
systems is to develop a form of control that can reduce 
process variable fluctuations, thus increasing accuracy as 
well as reducing the duty cycle of mechanical actuators 
associated with that of a specific process variable. By 
reducing the process variable fluctuations as well as the duty 
cycle of mechanical actuators, the efficiency of the plant can 
be drastically increased.  
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The algorithms used to measure the duty cycle of 
mechanical actuators, accuracy and total percentage 
movement of process variables are given in the equations 
below. 

The equation below illustrates the calculation of the duty 
cycle of an actuator which is denoted as the fraction for which 
an actuator is active during a specific cycle time. 

𝐷𝐷𝐷𝐷𝑐𝑐𝐸𝐸 𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸 (%) =  𝐴𝐴𝑐𝑐𝐺𝐺𝐵𝐵𝑣𝑣𝐵𝐵 𝐺𝐺𝐵𝐵𝑚𝑚𝐵𝐵
𝑇𝑇𝐵𝐵𝐺𝐺𝑑𝑑𝐵𝐵 𝑐𝑐𝐸𝐸𝑐𝑐𝐵𝐵𝐵𝐵 𝐺𝐺𝐵𝐵𝑚𝑚𝐵𝐵

 × 100 (13) 

The total percentage movement of the process variable is 
calculated using the equation below where Xi denotes a 
reading of the process variable over a number of iterations 
denoted as n. 
𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶 𝑀𝑀𝑐𝑐𝑣𝑣𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸𝑐𝑐 (%) =  ∑ |𝑋𝑋𝐵𝐵 − 𝑋𝑋𝐵𝐵+1|𝑑𝑑

𝐵𝐵=1   (14) 
The accuracy of the process variable to that of the set 

point is calculated using the equation below. The equation 
calculates the difference between the process variable and the 
set point such that Yi and Xi denote the reading of the set point 
and process variable values respectively. If the absolute 
difference between the process variable and set point fall 
within upper and lower specified control limits, the value of 
the process variable holds true for a specific range, n. 

𝐴𝐴𝐸𝐸𝐸𝐸𝐷𝐷𝐴𝐴𝑐𝑐𝐸𝐸𝐸𝐸 (%) =  𝑑𝑑−(𝐿𝐿𝐿𝐿𝐿𝐿< ∑ |𝑌𝑌𝑖𝑖− 𝑋𝑋𝑖𝑖| <𝑈𝑈𝐿𝐿𝐿𝐿)𝑛𝑛
𝑖𝑖=1
𝑑𝑑

 × 100 (15) 

5 Results and Discussion 

5.1 Load Increase Case 
The response of the system due to a load increase case can be 
viewed in figures 9-14. The MW load set point has been 
ramped from 160 MW at 50s into the simulation to a final 
value of 185 MW. The ramp rate of the load controller is 
specified at 10 MW/min. The unit efficiency is specified at 
100 % with a frequency correction of 0 Hz. The load increase 
will occur at a full load capability. Therefore, all mills and 
draught groups are operational.  

During a load increase case, all controllers prove to be 
empirically correct as they follow relevant direction and 
amplitude.  

The neural network controller outperforms the 
conventional PID controllers during a load increase transient 
state. Especially in the case of controlling steam pressure. 
Unlike the conventional PID controller, the neural network 
has the ability to decrease the output of the pressure controller 
during a load increase. Therefore, the control system is able 
to maintain a steady control of steam pressure during the 
transient state, thus allowing for a far smaller dead band of 
the critical process values than that of PID control. 

The figures 9 to 14 illustrate the response of the system 
due to a load increase case. The response from conventional 
PID and neural network are denoted as PID and NN 
respectively. 

The performance parameters include the duty cycle of the 
mechanical actuator associated with the critical parameter, 
the total percentage movement of the process value and the 
control output (CO), and the accuracy (as a percentage) of the 
process value to that of the set point within one percent.  

 

 
Figure 9 MW Load set point 

 
Figure 10 Boiler MJ Load Response 

 
Figure 11 Boiler MW Load Response 

 

 
Figure 12 Boiler Steam Pressure Response 
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Figure 13 MW Load Condition Monitoring Performance 

Parameters for Load Increase Case 

 

 
Figure 14 Steam Pressure Condition Monitoring 

Performance Parameters for Load Increase Case 

5.2 Mill Trip Case 
The response of the system due to a mill trip case can be 
viewed in the figures below. During a mill trip, the MW load 
setpoint is set to 200 MW. At 50s into the simulation, one of 
the mills are tripped, dropping the unit capability by 25%. 
Since the upper load limit is specified as 210MW, the MW 
load setpoint drops 25% to a value of 157,5MW. The MW 
load decreases at a ramp rate of 10MW/min. At 200s, the mill 
is brought back into service and the MW load setpoint is 
restored to 200 MW at a ramp rate of 10 MW/min.  

The trends show that as a mill trip occurs, the capability 
computation of the plant decreases by 25%. Hence, 
decreasing the boiler load demand by 10MW/min. A 
consequence of a decreased load demand causes a decrease 
in the steam mass flow as the load controller forces the steam 
valve to close in order to maintain a steady load demand. The 
decrease in steam mass flow causes the steam quality in the 
boiler drum decreases, thus causing the water level in the 
boiler drum to rise. With an increased water level, the drum 
level controller slowly closes the feed-water valve to 
accommodate for the change. 

The results obtained illustrate that the neural network 
control system outperforms the conventional PID control in a 
mill trip case. The intelligent control system possesses an 
exceptionally fast response time with little overshoot. Thus, 
allowing for decreased process value fluctuations. 

The neural network control system performs very well in 
the case of steam pressure and MW load control with little 
overshoot and fast response time. Once a mill trip occurs and 
the load demand decreases, the PID control system increases 
the output of the pressure controller therefore causing 
pressure losses in the plant. However, the neural network 
controller has the ability to decrease the control output and 
therefore maintain a steady steam pressure during a mill trip 
case. 

 

 

Figure 15 Number of mills online 

 
Figure 16 MW Load Response 

 

 
Figure 17 Boiler Steam Pressure Response 
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Figure 18 MW Load Condition Monitoring Performance 

Parameters for Mill Trip Case 

 

 
Figure 19 Steam Pressure Condition Monitoring 

Performance Parameters for Load Increase Case 

6 Conclusion 
In order to evaluate the performance of boiler sub-systems, in 
this research, a thermo-fluid model was modelled in 
accordance to the mechanical and process characteristics of 
an existing power plant. The model consists of a boiler steam 
drum, evaporator, superheater, attemperator, high pressure 
and low-pressure turbines. In addition, the thermo-fluid 
model has been calibrated to that of the Rankine cycle of the 
existing plant in order to provide optimised and accurate 
responses to control system behaviour.  

The control systems designed to optimise the critical 
process parameters were developed in order to reduce process 
value fluctuations, in turn, reducing movement on 
mechanical actuators such as valves, fan vanes etc. Validated 
results are thus required in order to understand the behaviour 
of the control systems as well as determine the correct action 
required in developing optimised controllers. Therefore, a 
condition monitoring algorithm was developed in order to 
measure the performance of the control system based on the 
process data, this includes the accuracy of the process value 

to that of the set point, the duty cycle of the control output as 
well as the total percentage movement of the process value.  

Conventional function block proportional-plus-
derivative-plus-integral control system as well as intelligent 
controllers such as artificial neural networks were developed 
to optimise the critical process parameters.  

The results for each control system obtained in figures 9 
to 14 clearly illustrates that regardless of the extensive use of 
control measures, the neural network controller outperforms 
the proportional-plus-integral-plus-derivative controller in 
terms of the duty cycle of the control output, PV accuracy and 
the total percentage movement of the control output. Figure 
11 illustrates that although the MW load controller obtains 
little overshoot and a fast response time using PID control, 
the increased duty cycle and total movement of the control 
output causes increased wear on mechanical components 
such as the coal feeders, fan vanes and steam valves. Thus, 
decreasing the plant life cycle. 

In conclusion, the developed model allows to predict 
behaviour of the boiler and its subsystems. This allows 
control engineers to observe fluctuations of the critical 
process parameters, as well, as to perform a sensitivity 
analysis and to assist control engineers to improve the plant 
efficiency. 

In a load increase case of 160 MW to 185 MW with a 
runtime of 700 seconds for Boiler Steam Pressure control. 
The Machine Learning algorithm achieved a total percentage 
movement on boiler MJ and boiler steam pressure of 
1134.48% and 75.46% respectively. In the same case, the PID 
control regime achieved a total percentage movement on the 
boiler MJ and boiler steam pressure of 1712.29% and 132.7% 
respectively. Thus, it is evident that the Machine Learning 
algorithm is able to significantly decrease process variability 
to that of the conventional PID controllers and in turn reduce 
the duty cycle of mechanical actuators. 

For a mill trip case in which one of four mills tripped for 
150 seconds. The Machine Learning controller was able to 
maintain a stable boiler steam pressure with a total percentage 
movement for boiler steam pressure of 69.2% compared to a 
total movement of 326% from the PID controller. Although 
there were slightly greater fluctuations in the control output 
during the mill trip case in order to maintain the steady 
process value. This is evident from the 31.2% duty cycle 
generated by the PID controller and a 48.7% duty cycle from 
the NN.  

The Machine Learning controller was able to outperform 
the PID controller for most aspects in terms of plant stability, 
process value accuracy including steady and responsive 
control given various plant disturbances. 
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