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Abstract: Large commercial aircraft by design are typically 
not capable of transporting maximum fuel capacity and 
maximum payload simultaneously. Beyond the maximum 
payload range, fuel requirements reduce payload capability. 
Varying environmental conditions further impact payload 
capability noticeably. An airline’s commercial department 
requires prior knowledge of any payload restrictions, to 
restrict booking levels accordingly. Current forecasting 
approaches use monthly average performance, at, typically, 
the 85% probability level, to determine such payload 
capability.  Such an approach can be overly restrictive in an 
industry where yields are marginal, resulting in sellable 
seats remaining empty. Monte Carlo simulation principles 
were applied to model the variance in environmental 
conditions, as well as in the expected payload demand. The 
resulting forecasting model allows the risk of demand 
exceeding supply to be assessed continually. Payload 
restrictions can then be imposed accordingly, to reduce the 
risk of demand exceeding supply to a required risk level. 

Additional keywords:  Fuel, payload, forecasting, 
performance, environment. 

1 Introduction 
Large commercial aircraft design requires compromise to 
contain operating and capital costs, whilst providing 
performance capability that accommodates the requirements 
of the majority of intended customers. One such compromise 
is the trade-off between range capability and payload 
capability: A large commercial aircraft, when lifting 
maximum fuel capacity, is unable to carry maximum payload 
simultaneously and vice versa.  

Airlines operating aircraft on routes longer than the 
design range for maximum payload capability therefore seek 
to maximise their sellable payload capacity on each flight. 
Continually varying environmental conditions challenge the 
performance analysts to provide accurate payload capability 
predictions for such routes. The airline’s revenue team, 
however, needs to know months in advance how many seats 
are sellable to potential customers. The risk of flying with 
empty seats unnecessarily is as taxing to the airline as is the 
risk of denied boarding and dissatisfied customers. 

 Traditional approaches to this conundrum apply monthly 
average environmental conditions at a predetermined 
probability level, typically at 85%. Annual payload 
memoranda, depicting predicted monthly load capabilities, 
are published twice a year. The intent is to ensure that the 

predicted payload capability is equal to or better than 
published, at the predetermined probability level. Such an 
approach does not minimise the inherent risk, though, of 
flying empty seats nor of having to turn passengers away on 
any particular day of operation. Nor can a monthly average 
prediction really be deemed representative of continually 
varying environmental conditions. 

Currently, to establish the payload memoranda, 
operational flight plans are calculated by commercially 
available flight planning systems, utilizing the monthly 
average temperature and wind profiles, at the predetermined 
probability level. Then, the payload capability is calculated 
manually, given the fuel requirements per flight. Clearly, the 
approach and methodology are rudimentary and far from 
optimal. Nor is the process dynamic. The aim, therefore, is to 
establish an improved dynamic forecasting methodology that 
minimises the risk of unfilled seats, respectively of denied 
boardings. 

2 Background 
The advances in computational methods concomitant with 
increased computational power, allow for the modelling and 
simulation of increasingly detailed aircraft components up to 
even complete fully configured aircraft behaviour. Filippone 
[5] found that such advances have not been fully integrated 
into the Flight Performance discipline seeking to support 
aircraft in service. Rather, perhaps resulting from aircraft 
technical data seldom being available in professional 
journals, the multi-disciplinary analysis of the in-flight 
performance of in-service aircraft still suffers from over-
simplifications and closed-form solutions developed in the 
1970s.  

Where aerodynamics and propulsion are in themselves 
advanced disciplines capable of providing accurate 
predictions, flight performance is not, relying instead on 
empirical flight data, as far as available, for performance 
predictions. Fundamentally, flight planning is performed by 
utilizing an incremental table look-up routine that provides 
for typical flight profiles. 

3 The Payload Range Trade-Off 
Ackert [1] reflected on how an understanding of the payload 
range capability assists both operators and financiers in 
matching the intended airline network with the optimum 
payload range of the aircraft to be deployed. With the growth 
in air transport requirements operating within constrained air 
traffic structures, ultrahigh capacity aircraft are increasingly 
becoming necessary. Martinez-Val et al. [8] found that, 
within the current design capabilities, the most constraining 
factors to producing such aircraft are the wingspan limit 
imposed by on-airport manoeuvrability and the wing loading 
resulting from maximum zero fuel weight (maximum 
payload). Depending on the span wise position of fuel tanks 
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and the wing structure arrangement, bending moments at 
maximum zero fuel weight can become limiting, even below 
maximum take-off weight.  

Fuel capacity is primarily constrained by the available 
space within the wing structure (other than auxiliary tanks in 
the tail) which in turn is constrained by airport limitations. 
The combination of these two factors therefore affects the 
payload range capability of any large aircraft.  

Within this context, Martinez-Val et al. [7] traced the 
development of civilian jet transport aircraft with reference 
to the payload range diagram, as representative of the range 
equation: Jet transport aircraft range capability increased 
from around 20,000 km in the 1970s (L1011, DC10-40, 747-
200) to over 30,000 km by 1995 onwards (777-200, A340-
600, A380-800). Martinez-Val et al. [7] established that, in 
addition to the constant trend in improved performance with 
time, wide body (long range) aircraft types further added to 
performance improvements through size. 

Mostly though, civil transport aircraft are operated well 
inside their payload range capability, implying that airlines 
are incurring extra costs, operating aircraft oversized in 
payload and / or fuel tank capacity. The difficulty here is that 
the payload range requirements vary vastly between differing 
air transport organisations, whilst the developmental costs of 
a transport aircraft prohibit the development of a multitude of 
aircraft with differing payload range capabilities. Conversely, 
when aircraft are operated at payload range limits, such 
operations necessarily require an optimised operation.     

Figure 1 graphically illustrates the limits affecting 
payload as a function of range: A full load of revenue 
generating load (passengers and / or cargo) can only, subject 
to winds and other atmospheric conditions, be carried so far. 
The aircraft is operated at maximum structural payload 
capability until the combination of fuel and payload carried 
reaches maximum take-off limit. Further destinations can 
only be served with a reduced payload, limited either by the 
maximum take-off weight (MTOW), trading off fuel required 
against payload carried, or by tank capacity limits beyond 
that. The ultimate limit in range is the ferry range capability, 
positioning an aircraft to a different destination without any 
payload. 

 

 
Figure 1 Payload Range Diagram 

4 The Payload Memoranda 
Whilst last minute travel does occur, typically either for 
urgent business or as a result of last minute holiday package 

offers, this is not the norm at regular schedule airlines. Low 
cost carriers have a different business model and are currently 
only found in the short to medium range market segments.  

Rather, given the cost, effort and distance of travel 
involved, passengers tend to book well in advance. This 
creates a number of challenges for the air carriers. An aircraft 
seat is a perishable commodity: once flown it cannot be 
recovered. Airlines therefore seek to fill all seats on the 
aircraft for each flight. 

Concurrently, airlines wish to maximise their revenue, 
e.g. the perishable commodity necessitates being priced “just 
right”, by pricing competitively but with due consideration of 
whether a market is under capacity, over capacity or balanced 
in supply and demand [4]. Airlines consequently utilize yield 
management systems to control demand through differential 
pricing. 

With yield management systems, pricing can be 
differential on a route depending on time of day (where there 
are multiple flights per day), day of week and season, to 
match supply and demand optimally. Supply, however, is 
only adjustable in discrete batches, number of seats per 
aircraft. Where demand is hugely variable, airlines can adjust 
using different types of aircraft. On long and very long routes, 
such flexibility diminishes, constrained by the range 
capability of the aircraft types available. On ultra-long range 
flights only one aircraft type in the fleet might be capable of 
servicing a particular route. Flexibility then only exists 
around the number of flights per day / week to match demand. 

Complicating matters further are routes that are at the 
payload range limits of the aircraft types available. Such 
additional constraints are typically seasonally variable. When 
flying westbound into the globally prevailing westerly wind 
system around the numerous permanent westerly jet streams, 
the payload range capability can be impacted noticeably. In 
order to utilize the yield management systems effectively, 
though, the airlines’ revenue departments require, well in 
advance, the number of sellable seats for each flight. On 
regular scheduled air carriers, flights are available for 
booking up to a year in advance.  
The flight performance department of the air carrier therefore 
regularly produces payload memoranda, estimating the likely 
capability of each route over a set period. How this is 
achieved varies between airlines. Typically, these payload 
memoranda get calculated bi-annually, analysing flight 
capabilities on a monthly basis over the review period, based 
on expected average conditions at a pre-set probability level. 
A higher probability of conditions being at or better than 
forecast reduces the risk of denied boarding of an overbooked 
flight, but increases the airline’s risk of flying empty seats on 
the day of operation. 

5 Accuracy of Current Forecasting 
Methodology 

To validate the necessity for an improved forecasting tool for 
route performance, a comparison is needed of the current 
forecasting methodology to actual flight plans. Over the 
period 1st September 2015 to 31st August 2017, 724 actual 
flights were conducted between Johannesburg and New York 
on an A340-600, out of a possible 731. Seven flights did not 
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operate due to either technical defects or extreme weather 
conditions [9].  

Operational flight plans, optimized for best economic 
speed and flight level according to environmental conditions 
were reviewed [2,3]. During the analysis, the correlation 
coefficient (R-Squared) between trip fuel requirements and 
the average wind component for the route was found to be in 
excess of 99% for the A340-600 operated at Maximum Take-
off Weight (MTOW). Route average wind component 
therefore presents an excellent predictor of fuel requirements, 
negating the need to calculate large numbers of complete 
operational flight plans. Figure 2 therefore plots the actual 
average wind component on a day of operation, obtained 
from the operational flight plans, versus the monthly average 
wind component at the 85% probability level (as used for 
forecasting). Average headwind component is shown as 
positive. 

 

 
Figure 2 Daily Average Wind Components 2015 to 2017 [9] 

From the fuel requirements the payload capability is 
calculated. Whenever a full passenger load cannot be carried, 
the number of sellable seats is restricted in the airline’s flight 
reservation system. Cargo carrying capability does not get 
considered in this instance, as passenger carrying capability 
is prioritised.  

The difference between actual and predicted trip fuel 
requirements is presented in figure 3, positive results 
indicating higher actual fuel requirements than predicted. The 
85% probability level is presented in figure 3 by the 
difference being 0%. The 724 data points yielded an average 
difference of predicted versus actual trip fuel requirements of 
-0.327% with a standard deviation of 0.526%, with the data 
testing positively for being normally distributed. 

The predicted values are those based on 85% probability 
wind component level whilst the observed values vary around 
the mean (50% probability level). On occasion some extreme 
outliers are observable (December 2015 and January 2016) 
attributable to the unusually low / high headwind components 
in December 2015 / January 2016 respectively, as observed 
in figure 2. 

Comparing the 85% predictions to the actual fuel 
requirements at MTOW over the period September 2015 to 

August 2017 yields an R Squared of 35.0%. 65% of the 
variance remains unexplained by the current predictive 
methodology. Consequently, with payload capability 
potentially being restricted by fuel requirements, the risk of 
overstating or understating payload capability predictions 
remains significantly onerous to the airline. 

 

 
Figure 3 Difference between Actual and Predicted Trip Fuel 

at MTOW [9] 

6 Effect on Passenger Load Carrying 
Capabilities 

With the predictive methodology focused on fuel 
requirements but the application thereof ultimately being on 
forecasting passenger load capability, it cannot be inferred 
that, in 85% of cases passenger load capability is understated. 
The number of passenger seats on an aircraft is finite and 
static. Consequently, where theoretical predicted passenger 
capacity exceeds 100% the over- or underestimation becomes 
diminished or even inconsequential. (Rather, the extra 
payload capacity above a full passenger load enables the 
carrying of ad hoc cargo. Ad hoc cargo demand typically 
arises at short notice rather than being booked months in 
advance.) 

 

 
Figure 4 Actual and Predicted Passenger Load Factor 

Capability [9] 

For a given average wind component the trip fuel 
requirements can be calculated. With the trip fuel plus fuel 
reserve requirements and the operating empty weight (OEW) 
of the aircraft subtracted from the maximum take-off weight 
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(MTOW), the payload capability can be determined. With 
average passenger weights known, the predicted versus 
actual passenger load factor capability (percentage of 
available seats) is assessed on any given day, as shown in 
figure 4.  

Figure 5 then shows the potential for denied boarding 
respectively for flying with empty seats unnecessarily. When 
predictions are under- or overstated, the magnitudes of such 
events are often significant, ranging from as much as 
potentially 18.1% of passengers denied boarding to possibly 
17.3% seats remaining unsold. A 1% difference in fuel burn 
magnifies into approximately a 10% difference in load factor 
capability. 

 

 
Figure 5 Potential for Denied Boarding and for Seats 

Available but not Sold as a Result of the 85% 
Probability Monthly Prediction [9]. 

7 Monte Carlo Simulation 
Monte Carlo simulations tend to follow the following pattern 
[6]: 

 
1. Define a domain of possible inputs: Here, the 

predominantly deterministic input variable is the 
average headwind component along any given route.  

2. Generate inputs randomly from a probability 
distribution over the domain: With the mean and 
standard deviation known, a random number 
generator, the essence of any Monte Carlo simulation, 
then provides a probability distribution from sufficient 
number of iterations.  

3. Perform a deterministic computation on the inputs: 
For any / every chosen probability level, the fuel 
requirements, and hence the payload capability can be 
determined. 

4. Aggregate the results of the individual computations 
into the final result: The daily payload capabilities 
then aggregate at any desired probability level into 
payload memoranda for an airline to determine the 
number of sellable tickets for the next forecast period. 
  

Numerous Monte Carlo Simulation packages are 
commercially available. Here, Microsoft Excel was used to 
create the Monte Carlo model. A spreadsheet was designed 
to predict trip fuel requirements and payload capability for a 
twelve months period, from a selected starting date. The user 

is able to choose the required probability level of achieving 
the predicted performance, or better. Ideally, the required 
probability level is a considered balance between the risks / 
costs of flying empty seats versus off-loading overbooked 
passengers. At the pre-determined probability level, the 
spreadsheet provides both the expected trip fuel value as a 
percentage of maximum take-off weight, and the predicted 
bookable number of passengers. 

Further, the user can assess the prospect of the availability 
of a desired load factor, including the likelihood of being able 
to sell all seats on the aircraft (100% load factor).  The 
Aircraft Operator needs to be able to achieve a minimum 
average load factor annually to operate any route profitably.  

For instance, entering the break-even load factor on the 
spreadsheet determines the daily probability level of having 
the performance capability to carry the break-even load. 
There may well be days where it may not be guaranteed that 
a flight can be operated profitably. However, a tool of this 
nature allows one to assess the risk of the operation over the 
period of a financial year, when combined with expected load 
factors (passenger loads). Invariably, such a spreadsheet is 
highly and easily adaptive to specific needs. 

8 Comparison of the Monte Carlo 
Simulation versus Current Forecasting 
Approaches 

Current forecasting approaches use monthly average winds at 
a chosen probability level, to predict trip fuel requirements, 
or better (less), to derive payload capability. Typically, an 
85% probability level is chosen, although this may be overly 
conservative. An immediately apparent shortcoming is that 
such an approach utilizes the same average wind component 
for the entire month, followed by a noticeable step change for 
the next month.  

The use of probability as high as 85% partly disguises the 
reduction in the intended conservative view of this current 
methodology, but can also partly result in potentially 
unnecessarily onerous results. The actual probability of the 
average wind component being the monthly average figure 
applied (or less) can potentially vary between 65% and 95%. 
Figure 6 reflects the Monte Carlo simulation of the 85% 
probability winds, compared to the monthly average wind 
components, at 85% probability level. 

 

 
Figure 6 85% Probability Wind Predictions [9] 
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Figure 7 Daily Average Wind Component Variations [9] 

Very noticeable are the seeming “anomalies” in the wind 
patterns for February and August. This raises the question of 
whether the modelling is sufficiently representative. Figure 7 
reproduces figure 2, with a 30-day moving average trend line 
added.   

The 30-day moving average trend line suggests that 
January and February 2016 indeed experienced unusual 
average headwind components relative to the surrounding 
months. This effect is not repeated the following year, 2017, 
although it can be argued that the whole Northern 
Hemisphere winter period experienced milder headwind 
conditions for that season. The August “trough”, seen in the 
monthly-average-wind-component curve in figure 2, is not 
reflected in the moving average trend line in Figure 7 for 
2016 or for 2017. 

Clearly, the anomalies seen in figure 6 in the monthly 
average wind components are not recurring annual events. 
Rather, they appear to be short-term variations from the long-
term trend of the annually cyclical nature of weather patterns. 
Consequently, a significant shortcoming in the current 
methodology exists: Using the monthly average wind 
component experienced during the preceding year can distort 
the predictions for the following year, when unusual short-
term variations occur. 

As a result booking levels might become more restricted 
than necessary resulting in excessive empty seats on the day 
of operation. Alternatively, the aircraft might end up 
overbooked requiring denied boardings. 

9 Monte Carlo Simulation of the Load 
Factors 

Passenger demand can vary by day of week and by month of 
year. The commercial departments of airlines make use of 
commercially available yield management systems to 
forecast passenger loads on a daily basis taking into account 
such variability [4]. The purpose here is not to duplicate or 
replace such yield management system functionality, 
although the Monte Carlo simulation methodology might 
well be of value to such underlying analyses. Rather, the 
purpose here is to assess the interactivity between capability 
and demand with due regard for variability in both.  

Figure 8 plots actual load factors from December 2016 to 
January 2018, inclusive. Additionally, the Monte Carlo 

simulation predictions for 2017 of load factor capability are 
presented for 2017.  

Interestingly, only 16% of flights had a load factor better 
than predicted at the 85% probability level. This compares 
favorably to the contemporary methodology of using monthly 
average wind components, where 27% of flights achieved 
load factors better than predicted capability. Consequently, 
the risk of flying empty seats unnecessarily is reduced 
through the simulation depicted in figure 8. 

 

 
Figure 8: Actual Load Factors versus Monte Carlo Predicted 

Capability 2017 [9] 

In figure 9 the 30-day moving average trend line is added 
to the actual load factor graph. Seasonal effects are evident: 
Peaks in passenger loads are seen over the Easter and 
Christmas holiday periods. The Northern Hemisphere 
summer holiday period is reflected in the passenger load 
peaks of July and August. 

With the variation around the seasonal pattern, the 30-day 
moving average curve, known from the actual load factors for 
the period, a Monte Carlo simulation again becomes possible.  
The resulting Excel spreadsheet is similar in design to the one 
described above. Figure 10 portrays, at the 50% and 85% 
probability levels, the required load factors and the load 
factor capabilities from the respective Monte Carlo 
simulations, for 2017. 

 

 
Figure 9 Actual Load Factors 2017 Flight [9] 

In this instance, up to 19% of flights are predicted to 
require a load factor greater than predicted available, at the 
85% level both for the load demand and supply capability 
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predictions. It must be emphasised that the requirement 
prediction is for 85% or less demand, whilst the capability is 
for 85% or more supply. As evident from Figure 10, the risk 
of demand exceeding supply is predominant only during the 
peak periods, most noticeably over December / January, 
when winds are the most adverse. 

 

 
Figure 10 Monte Carlo Load Factor Predictions 2017 [9] 

Up to this point, the approach has been to assess the 85% 
probability wind levels. Figure 10 now suggests that a 
different approach to dealing with the demand versus supply 
challenge would be more prudent. With Monte Carlo 
simulations established for both the supply and demand 
distributions, it becomes practical to assess the risk factor of 
demand exceeding supply on a continual basis. Payload 
restrictions based on risk appetite can then be imposed 
individually per flight, rather than generically per month, as 
done historically. 

10 The Risk of Demand Exceeding 
Supply 

Figure 11 reveals that the risk of demand exceeding supply 
only surpasses the 15% probability level over December.  

 

 
Figure 11 Risk of Demand Exceeding Supply, 2017 [9] 

However, from Figure 10, the December period does not 
reflect the highest demand levels, but does fall within the 
period where winds are least favourable. Invariably, the 
pattern in figure 11 differs from that of Figure 10, as figure 
11 combines load demand with load supply probability 

distributions, taking into account that the load factor cannot 
exceed 100%.  

In combination, however, the December period presents 
the greatest risk by far of demand exceeding supply. For this 
period, imposing payload restrictions, reducing the number 
of sellable seats, is certainly warranted to contain the risk. 
Conversely, though, for the remainder of the period under 
review, the risk of demand exceeding supply remains well 
below the 15% risk level, prior to any payload restrictions 
having been imposed. 

11 Load Factor Restrictions based on 
Risk of Denied Boarding 

Using Monte Carlo simulation of the payload demand and 
supply probability distributions it becomes possible to 
determine the required payload restriction to achieve a 
preferred risk profile. The preferred risk profile is presented 
by the associated load factor restriction, of not having to off 
load passengers. Figure 12 portrays such required payload 
restrictions (load factors) at four different risk levels. The 
lower the desired risk level is, the more likely it will be that a 
payload restriction will be required. The respective graphs are 
more angular since payload restrictions can only be done in 
discrete units (seats), even if expressed as a percentage of 
total seats on the aircraft.  

As already predicted by Figure 10, payload restrictions 
need only be considered during the various peak periods. 
Depending on risk appetite, the required restrictions are 
minimal, with the notable exception over the December 
period. At the 15% risk level, only the December period 
requires some intervention. Further, the predicted payload 
capability for 85% probability winds (or better) is presented 
in Figure 12. Noticeably, using 85% probability winds to 
predict payload capability remains highly conservative in this 
instance. The probability of denied boarding (demand 
exceeding supply) is mostly far less than 1% except for the 
July / August period, where the probability touches 2% at 
peak demand. 

 

 
Figure 12 Required Payload Restriction at the Selected Risk Level 

[9] 

Figure 13 repeats Figure 12 but includes a 5% increase in 
demand, approximating one to two year’s market growth. To 
retain the selected risk levels of denied boarding requires 
more restrictive load factor limitations, as expected.  
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Nonetheless, the load factor limitations based on 85% 
probability winds remains highly conservative with mostly 
around 1% risk of denied boarding, except for the period July 
/ August. Here, the risk of denied boarding can be as high as 
5% at peak time. Nevertheless, the winds for the July / August 
period are the most favourable, permitting full passenger 
capability more often than not. 

 

 
Figure 13 Required Payload Restriction at the Selected Risk Level, 

with 5% Market Growth [9] 

Accordingly, in the absence of availability of utilizing 
payload demand predictions, restricting payload on the basis 
of only the predicted wind components at 85% probability 
level, remains an overly conservative methodology for 
denied boarding risk management. Figure 10 would suggest 
that using the average wind component (50% probability) 
remains sufficiently conservative, even with near term 
growth above current load demand levels. Only the August 
peak period would then be exposed to a 10% (current load 
demand) to 15% (with growth) risk of denied boarding, only 
when the aircraft is not able to carry 100% passenger load.    

In all these graphs depicting load factor on the vertical 
axis, a 100% load factor remains the maximum achievable. 
At a desired probability level, payload capability may well be 
higher than 100% passenger load during periods throughout 
the year, implying that additionally cargo could be carried. 
Since this is cargo capability is not available year round, such 
cargo would be ad hoc, typically at short notice, and thus does 
not distract from this study: The focus remains on passenger 
load capability, which cannot exceed 100%, as there are only 
a finite number of seats that can be filled on the aircraft. 
Therefore, the graphs are shown capped at 100% load factor. 

12 The Probability of Flying Empty Seats 
Unnecessarily 

Reducing the risk of denied boarding, becoming more 
restrictive in the number of seats made available, invariably 
increases the risk of flying empty seats that could have been 
filled. Potential revenue is not realized. Invariably, there is a 
balance depending on risk appetite. 

As expected, Figure 14 shows the risk of sellable seats 
being blocked to be higher during the peak periods. Further, 
the risk of revenue not realized increases as the risk of denied 
boarding decreases, with the 85% probability winds based 
payload restrictions being most onerous. An approximate 
balance exists between the 5% off load risk profile, 

respectively the 50% probability wind profile with respect to 
the risk of flying empty seats unnecessarily. The risks of 
offload approximately match the risks of revenue not 
realized. 

 

 
Figure 14 Risk of Revenue not Realized [9] 

 
Figure 15 Risk of Revenue not Realized, with 5% Market Growth 

[9] 

As before, figure 15 in turn considers the effect of a 5% 
market growth. The 5% offload risk profile now moves closer 
to the 50% probability winds profile. Figure 12 to figure 15 
suggest that, in the absence of load demand predictions, the 
50% probability winds should be used to restrict the load 
factors, largely containing the risks of offloads to within 5% 
and the risk of revenue not realized to within 10%. 

13 Conclusion 
Current forecasting approaches use monthly average winds at 
a chosen probability level, to predict trip fuel requirements, 
or better (less), to derive payload capability. An immediately 
apparent shortcoming is that such an approach utilizes the 
same average wind component for the entire month, followed 
by a noticeable step change for the next month. The required 
probability level is predetermined and thus fixed. Typically, 
an 85% probability level is chosen. As such, the current 
methodology is onerously restrictive with numerous flights 
operating with open seats that were in fact sellable.  

Having established normality of the variance of the 
independent variable, the average headwind component was 
then modelled using random number generation, the Monte 
Carlo simulation. A predetermined probability level 
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reflecting risk appetite is no longer required. Rather, the 
desired probability levels can now be applied as a variable. 
Further, along the same principles, historic (or projected) 
demand can be modelled simultaneously with predicted 
average wind components, determining supply, again using 
Monte Carlo simulation. Seasonal variations in average wind 
component with the annual cyclical weather patterns and 
climate changes can now be compared to the unrelated daily, 
weekly and seasonal variations in passenger travel patterns. 
Supply and demand can now be compared and, where 
necessary, matched.   

With Monte Carlo simulations established for both the 
supply and demand distributions, it becomes practical to 
assess the actual risk factor of demand exceeding supply on a 
daily basis, rather than predetermining probability levels. 
Payload restrictions based on risk appetite can then be 
imposed individually per flight post analysis, rather than 
predetermined generically per month, as done historically. By 
managing supply versus demand on a daily basis, the risk of 
flying empty seats unnecessarily, respectively the risk of 
denied boarding can be minimized. Further, predicted growth 
in demand can easily be incorporated into the forecasting 
process.    

Further, and more importantly, as projected demand is 
updated closer to time of flight, the analyses can easily be 
recalculated to achieve the optimum balance between 
available supply and required demand. 

Invariably, as payload demand increases with market 
growth over time, the risk of denied boarding will increase, 
with the sinusoidal modelling containing the increased risk 
with market growth somewhat longer, before it could become 
problematic. Monte Carlo simulation contains the risk even 
longer. Fundamentally, through the Monte Carlo simulation 
capabilities, the forecasting has progressed from rudimentary 
and conservative supply prediction towards daily scenario 
planning of matching supply and demand. 
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